

DEPARTMENT OF CIVIL ENGINEERING

B.E. CIVIL ENGINEERING

CURRICULUM & SYLLABUS

(1st to 8th Semester)

under

REGULATIONS 2021

(Approved in the Third Board of Studies meeting held on 7th February 2023 and Academic Council Meeting held on 17th February 2023)

You Choose, We Do It St. JOSEPH'S COLLEGE OF ENGINEERING (An Autonomous Institution) St. Joseph's Group of Institutions OMR, Chennai - 119

DEPARTMENT OF CIVIL ENGINEERING B.E. CIVIL ENGINEERING REGULATIONS – 2021 (CHOICE BASED CREDIT SYSTEM) CURRICULUM AND SYLLABI

PROGRAM OUTCOMES (POs)

Engineering graduates will be able to:

PO:1 Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO:2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO:3 Design/development of solutions: Design solution for complex engineering problems and design systems components or process that meet the specified needs with appropriate consideration for the public health and safety , and the cultural, societal, and environmental considerations.

PO:4 Conduct investigations of complex problems: Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO:5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO:6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO:7 Environmental and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of, and need for sustainable development.

PO:8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO:9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO:10 Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as , being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO:11 Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO:12 Life-Long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Engineering Graduates will be able to

PEO:1Graduates of the programme will apply principles of basic and engineering sciences in analysis, design and operation of Civil Engineering systems

PEO:2 Graduates of the programme will contribute to the development of sustainable Infrastructure for the betterment of society.

PEO:3 Graduates of the programme will engage in lifelong learning and adapt to changing professional and societal needs with focus on research & development and industry interaction.

PEO:4 Graduates of the programme will discharge their duties as professional Civil Engineers with quality and ethics.

PROGRAM SPECIFIC OBJECTIVES (PSOs)

PSO 1: The students graduating in Civil Engineering will have profound foundation in Mathematical, Scientific and Engineering domains necessary to achieve professional and productive excellence in technical and non-technical problem solving and analyzing engineering problems.

PSO 2: The students graduating in Civil Engineering will have the ability to Create, select, and apply appropriate techniques, resources, and modern engineering tools such as CAD, STAAD-Pro and GIS including prediction and modelling to complex Civil Engineering activities with an understanding of the limitations.

PSO 3: The students graduating in Civil Engineering will have the ability to Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage Civil Engineering projects and in multidisciplinary environments.

Vision of the Department

To educate the new generation Civil Engineers to meet the future technological needs by imparting sound technical knowledge and to improve professional leadership and management quality in public service.

Mission of the Department

- To enhance and enrich the technical knowledge in civil engineering through teaching-learning process.
- To educate the students about the significance of professional and ethical practices.
- To facilitate the understanding and implementation of innovative ideas through research and development.
- To develop personal competence among students which will improve their entrepreneurial and managerial skills.

CURRICULUM

SEMESTER I

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
THEO	RY							
1	HS1101	Communicative English (Common for all Branches of B.E. / B. Tech Programmes)	HSC	3	3	0	0	3
2	MA1102	Engineering Mathematics – I (Common for all Branches of B.E. / B. Tech Programmes)	BSC	4	4	0	0	4
3	PH1103	Engineering Physics (Common for all Branches of B.E. / B. Tech Programmes)	BSC	3	3	0	0	3
4	CY1104	Engineering Chemistry (Common for all Branches of B.E. / B. Tech Programmes)	BSC	3	3	0	0	3
5	GE1105	Problem Solving and Python Programming (Common for all Branches of B.E. / B. Tech Programmes)	ESC	3	3	0	0	3
6	GE1106	Engineering Graphics (Common for all Branches of B.E. / B. Tech Programmes)	ESC	6	2	0	4	4
PRAC	TICAL							
7	GE1107	Python Programming Laboratory (Common for all Branches of B.E. / B. Tech Programmes)	ESC	4	0	0	4	2
8	BS1108	Physics and Chemistry Laboratory (Common for all Branches of B.E. / B. Tech Programmes)	BSC	4	0	0	4	2
		Total		30	18	0	12	24

SEMESTER II

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
THEO	RY							
1	HS1201	Professional English (Common for all Branches of B.E. / B. Tech Programmes)	HSC	3	3	0	0	3
2	MA1202	Engineering Mathematics -II (Common for all Branches of B.E. / B. Tech Programmes Except AI-DS& AI-ML)	BSC	4	4	0	0	4
3	PH1251	Physics for Civil Engineering	BSC	3	3	0	0	3
4	GE1204	Environmental Science and Engineering (Common for all Branches of B.E. / B. Tech Programmes)	HSC	3	3	0	0	3
5	BE1253	Basic Electrical and Electronics Engineering	ESC	3	3	0	0	3
6	GE1206	Engineering Mechanics (Common for Civil & Mechanical)	ESC	4	3	1	0	4
PRAC	TICAL							
7	GE1207	Engineering Practices Laboratory (Common for all Branches of B.E. / B. Tech Programmes)	ESC	4	0	0	4	2
8	CE1208	Computer aided drafting Laboratory	PCC	4	0	0	4	2
		Total		28	19	1	8	24

SEMESTER III

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CATEGORY CONTACT PERIODS		т	Ρ	С
THEO	RY							
1	MA1301	Transforms and Partial Differential Equations	BSC	4	3	0	0	4
2	CE1302	Engineering Geology and Construction Materials	PCC	3	3	0	0	3
3	CE1303	Strength of Materials	PCC	3	3	0	0	3
4	CE1304	Concrete Technology	PCC	3	3	0	0	3
5	CE1305	Fluid Mechanics	PCC	3	3	0	0	3
6	CE1306	Surveying	PCC	3	3	0	0	3
PRAC	TICAL							
7	CE1307	Strength of Materials Laboratory	PCC	4	0	0	4	2
8	CE1308	Surveying laboratory	PCC	4	0	0	4	2
		27	18	0	8	23		

SEMESTER IV

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	ORY CONTACT PERIODS		т	Ρ	С			
THEO	THEORY										
1	MA1455	Numerical Methods	BSC	4	4	0	0	4			
2	CE1402	Water Supply Engineering	PCC	3	3	0	0	3			
3	CE1403	Highway Engineering	PCC	3	3	0	0	3			
4	CE1404	Applied Hydraulic Engineering	PCC	3	3	0	0	3			
5	CE1405	Structural Analysis – I	PCC	3	3	0	0	3			
6	CE1406	Geotechnical Engineering - I	PCC	3	3	0	0	3			
PRAC	TICAL										
7	CE1407	Advanced Surveying Laboratory	PCC	4	0	0	4	2			
8	CE1408	Hydraulic Engineering Laboratory	PCC	4	0	0	4	2			
9	HS1310	Professional Skills laboratory	EEC	1	0	0	1	1			
		28	19	0	9	24					

SEMESTER V

S.No.	COURSE CODE	COURSE TITLE	CATEGORY CONTACT PERIODS		L	т	Ρ	с				
THEO	THEORY											
1	CE1501	Structural Analysis – II	PCC	3	3	0	0	3				
2	CE1502	Geotechnical Engineering - II	PCC	3	3	0	0	3				
3	CE1503	Railways, Airports and Harbour Engineering	PCC	3	3	0	0	3				
4	CE1504	Wastewater Engineering	PCC	3	3	0	0	3				
5	CE1505	Design of Reinforced Concrete Elements	PCC	3	3	0	0	3				
6		Professional Elective – I	PEC	3	3	0	0	3				
PRAC	TICAL											
7	CE1507	Environmental Engineering Laboratory	PCC	4	0	0	4	2				
8	CE1508	Soil Mechanics Laboratory	PCC	4	0	0	4	2				
		26	18	0	8	22						

SEMESTER VI

S.No.	COURSE CODE	COURSE TITLE	CATEGORY CONTACT PERIODS			т	Ρ	С			
THEO	THEORY										
1	CE1601	Irrigation Engineering	PCC	3	3	0	0	3			
2	CE1602	Construction Management	PCC	3	3	0	0	3			
3	CE1603	Design of Steel Structures	PCC	3	3	0	0	3			
4		Professional Elective – II	PEC	3	3	0	0	3			
5		Professional Elective – III	PEC	3	3	0	0	3			
6		Open Elective – I	OEC	3	3	0	0	3			
PRAC	TICAL										
7	CE1607	Construction Materials and Highway Engineering Laboratory	PCC	4	0	0	4	2			
8	CE1608	Irrigation and Environmental Engineering Drawing	PCC	4	0	0	4	2			
		26	18	0	8	22					

SEMESTER VII

S.No.	COURSE CODE	COURSE TITLE	CATEGORY CONTACT PERIODS		L	т	Ρ	с			
THEO	RY										
1	CE1701	Estimation, Costing and Valuation	PCC	3	3	0	0	3			
2	CE1702	Structural Design and Drawing	PCC	5	3	0	2	4			
3		Open Elective – II	OEC	3	3	0	0	3			
4		Professional Elective – IV	PEC	3	3	0	0	3			
5		Professional Elective – V	PEC	3	3	0	0	3			
PRAC	TICAL										
6	CE1707	Summer Internship / Summer training (4 weeks)	IPT	0	0	0	0	2			
8	CE1708	Design Project	EEC	4	0	0	4	2			
MAND	MANDATORY COURSE										
9	AD100X	Audit Course	AC	2	2	0	0	0			
	Total				17	0	8	20			

SEMESTER VIII

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С				
THEO	THEORY											
1		Professional Elective – VI	PEC	3	3	0	0	3				
2		Professional Elective – VII PEC 3		3	0	0	3					
PRAC	TICAL											
3	CE1807	Project Work	EEC	20	0	0	20	10				
		26	6	0	20	16						

COURSE CREDITS – SEMESTER WISE

Branch	I	II	Ш	IV	v	VI	VII	VIII	TOTAL
Civil	24	24	23	24	22	22	20	16	175

LIST OF PROFESSIONAL ELECTIVES

PROFESSIONAL ELECTIVE - I

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	с
1	CE1001	Remote Sensing	PEC	3	3	0	0	3
2	CE1002	Geographic Information System	PEC	3	3	0	0	3
3	CE1003	Geo informatics Applications for Civil Engineers	PEC	3	3	0	0	3
4	CE1004	Advanced Surveying Techniques	PEC	3	3	0	0	3

PROFESSIONAL ELECTIVE - II

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
1	CE1005	Air Pollution and Control Engineering	PEC	3	3	0	0	3
2	CE1006	Environmental and Social Impact Assessment	PEC	3	3	0	0	3
3	CE1007	Industrial Wastewater Treatment	PEC	3	3	0	0	3
4	CE1008	Municipal Solid Waste Management	PEC	3	3	0	0	3

PROFESSIONAL ELECTIVE - III

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
1	CE1009	Pavement Engineering	PEC	3	3	0	0	3
2	CE1010	Traffic Engineering and Management	PEC	3	3	0	0	3
3	CE1011	Transportation Planning and Systems	PEC	3	3	0	0	3
4	CE1012	Urban Planning and Development	PEC	3	3	0	0	3

PROFESSIONAL ELECTIVE – IV

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
1	CE1013	Hydrology and Water Resources Engineering	PEC	3	3	0	0	3
2	CE1014	Integrated Water Resources Management	PEC	3	3	0	0	3
3	CE1015	Groundwater Engineering	PEC	3	3	0	0	3
4	CE1016	Water Resources Systems Engineering	PEC	3	3	0	0	3

PROFESSIONAL ELECTIVE - V

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
1	CE1017	Design of Plate and Shell Structures	PEC	3	3	0	0	3
2	CE1018	Prestressed Concrete Structures	PEC	3	3	0	0	3
3	CE1019	Industrial Structures	PEC	3	3	0	0	3
4	CE1020	Maintenance, Repair and Rehabilitation of Structures	PEC	3	3	0	0	3
5	CE1021	Powerplant Structures	PEC	3	3	0	0	3
6	CE1022	Prefabricated Structures	PEC	3	3	0	0	3
7	CE1023	Tall Structures	PEC	3	3	0	0	3
8	CE1024	Aseismic Design of Structures	PEC	3	3	0	0	3
9	CE 1025	Disaster management	PEC	3	3	0	0	3

PROFESSIONAL ELECTIVE - VI

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
1	CE1026	Geo-Environmental Engineering	PEC	3	3	0	0	3
2	CE1027	Ground Improvement Techniques	PEC	3	3	0	0	3
3	CE1028	Soil Dynamics and Machine Foundations	PEC	3	3	0	0	3
4	CE1029	Rock Mechanics	PEC	3	3	0	0	3

PROFESSIONAL ELECTIVE - VII

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	с
1	CE1030	Coastal Engineering	PEC	3	3	0	0	3
2	CE1031	Coastal Zone Management	PEC	3	3	0	0	3
3	CE1032	Global Climate Change	PEC	3	3	0	0	3
4	CE1033	Climate Change and Vulnerability Assessment	PEC	3	3	0	0	3

LIST OF OPEN ELECTIVES

OPEN ELECTIVE - I

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
1	OME103	Energy Conservation in Thermal and Electrical Utilities	OEC	3	3	0	0	3
2	OCH103	Environment and Agriculture	OEC	3	3	0	0	3
3	OEE102	Renewable Energy Sources	OEC	3	3	0	0	3
4	OEI101	Sensors and Transducers	OEC	3	3	0	0	3
5	OME107	Vibration and Noise Control	OEC	3	3	0	0	3

OPEN ELECTIVE - II

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
1	OCH104	Textile effluent treatments	OEC	3	3	0	0	3
2	OEI102	Robotics	OEC	3	3	0	0	3
3	OME104	Industrial Safety Engineering	OEC	3	3	0	0	3
4	OCS101	Introduction to C Programming	OEC	3	3	0	0	3
5	OME106	Testing of Materials	OEC	3	3	0	0	3

AUDIT COURSE

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
1	AD1001	Constitution of India	AC	2	2	0	0	0
2	AD1002	Value Education	AC	2	2	0	0	0
3	AD1003	Pedagogy Studies	AC	2	2	0	0	0
4	AD1004	Stress Management by Yoga	AC	2	2	0	0	0
5	AD1005	Personality Development Through Life Enlightenment Skills	AC	2	2	0	0	0
6	AD1006	Unnat Bharat Abhiyan	AC	2	2	0	0	0
7	AD1007	Essence of Indian Knowledge Tradition	AC	2	2	0	0	0
8	AD1008	Sanga Tamil Literature Appreciation	AC	2	2	0	0	0

LIST OF OPEN ELECTIVES OFFERED TO OTHER DEPARTMENTS

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
1	OCE101	Air Pollution and Control	OEC	3	3	0	0	3
2	OCE102	Introduction to Geographic Information System	OEC	3	3	0	0	3
3	OCE103	Environmental impact assessment	OEC	3	3	0	0	3
4	OCE104	Green Building Design	OEC	3	3	0	0	3

VALUE ADDED COURSES

S.No.	COURSE CODE	COURSE TITLE	L	Т	Ρ	С
1	CVA001	Construction Technology	2	0	0	2
2	CVA002	AUTOCAD	1	0	2	2
3	CVA003	Structural Analysis and Design	1	0	2	2
4	CVA004	3D's MAX	1	0	2	2
5	CVA005	STAAD PRO Analysis and Design	1	0	2	2
6	CVA006	Project Management using Primavera	1	0	2	2
7	CVA007	TEKLA Structures	1	0	2	2
8	CVA008	E TABS Software	1	0	2	2
9	CVA009	Building Modelling using 3D Revit Architecture	1	0	2	2
10	CVA010	Advanced Field Surveying	1	0	2	2
11	CVA011	Building information modelling and MS Project	2	0	0	2
12	CVA012	Practical Valuation	2	0	0	2
13	CVA013	Vastu in Construction	2	0	0	2
14	CVA014	Automation in Construction	2	0	0	2
15	CVA015	Green Building Concepts	2	0	0	2
16	CVA016	Interior Design	2	0	0	2
17	CVA017	In-Situ Soil testing and instrumentation	2	0	0	2
18	CVA018	Architectural Acoustics	2	0	0	2
19	CVA019	Smart Cities	2	0	0	2
20	CVA020	Forensic Civil Engineering	2	0	0	2

HS1101	COMMUNICATIVE ENGLISH	L	Т	Ρ	С
	(Common for all Branches of B.E. / B. Tech Programmes)	3	0	0	3
OBJECTIVES					
🛠 To	develop the basic reading and writing skills of first year engineering	and	tech	nol	ogy
stuc	dents.				
✤ To	help learners develop their listening skills, which will, enable them listen	to I	ectui	es a	and
com	prehend them by asking questions; seeking clarifications.				
♦ Tol	nelp learners develop their speaking skills and speak fluently in real cont	exts	•		
♦ Tol	nelp learners develop vocabulary of a general kind by developing their re	adir	ıg sk	ills.	
UNIT I	SHARING INFORMATION RELATED TO ONESELF/FAMILY& FRIEN	IDS			9
Reading – cri	tical reading – finding key information in a given text – shifting fac	cts f	rom		
opinions - Wri	ting - autobiographical writing - developing hints. Listening- short tex	ts- s	short		
formal and inf	ormal conversations. Speaking- basics in speaking - introducing o	ones	elf -	C	01
exchanging p	ersonal information- speaking on given topics & situations La	angı	Jage		
development-	voices- Wh- Questions- asking and answering-yes or no questions-	part	s of		
speech. Vocal	oulary development prefixes- suffixes- articles - Polite Expressions.				
UNIT II	GENERAL READING AND FREE WRITING				9
Reading: Sho	rt narratives and descriptions from newspapers (including dialogu	les	and		
conversations	; Reading Comprehension Texts with varied question types - V	√ritir	ng –		
paragraph writ	ing- topic sentence- main ideas- free writing, short narrative descriptio	ns ı	ising		
some suggeste	ed vocabulary and structures –. Listening - long texts - TED talks - ex	<ten< td=""><td>sive</td><td>С</td><td>02</td></ten<>	sive	С	02
speech on cu	urrent affairs and discussions Speaking – describing a simple pro	oce	ss –		
asking and	answering questions - Language development – prepositions,	clau	ises.		
Vocabulary dev	velopment- guessing meanings of words in context -use of sequence w	ord	s.		
UNIT III	GRAMMAR AND LANGUAGE DEVELOPMENT				9
Reading- short	texts and longer passages (close reading) & making a critical analys	is of	f the		
given text Wr	iting – types of paragraph and writing essays – rearrangement of	jum	bled		
sentences. Li	stening: Listening to ted talks and long speeches for comprehension. S	peal	king-	C	03
role plays - as	sking about routine actions and expressing opinions. Language devel	opn	ent-		00
degrees of co	mparison- pronouns- Direct vs. Indirect Questions. Vocabulary develo	pme	nt –		
idioms and phr	ases- cause & effect expressions, adverbs.				
UNIT IV	READING AND LANGUAGE DEVELOPMENT				9
Reading- com	prehension-reading longer texts- reading different types of texts- ma	gazi	nes.		
Writing- letter	writing, informal or personal letters-e-mails-conventions of personal	il ei	nail-		
Listening: Liste	ening comprehension (IELTS, TOEFL and others). Speaking -Speakin	g a	bout	C	04
friends/places	/hobbies - Language development- Tenses- simple present-simple past-	· pre	sent		U 4
continuous an	d past continuous- conditionals – if, unless, in case, when and	l ot	hers		
Vocabulary dev	velopment- synonyms-antonyms- Single word substitutes- Collocations.				
UNIT V	EXTENDED WRITING				9
Reading: Read	ling for comparisons and contrast and other deeper levels of meaning -	-Wri	ting-		
brainstorming -	writing short essays - developing an outline- identifying main and sub	ordi	nate		
ideas- dialogu	e writing- Listening - popular speeches and presentations - Spe	aki	ng -	С	05
impromptu sp	eeches & debates Language development-modal verbs- present/ pas	t pe	rfect		
tense - Vocabu	lary development-Phrasal verbs- fixed and semi-fixed expressions.				
	TOTAL	.:4	5 PE	RIO	DS

		ENGINEERING MATHEMATICS –I	L	Т	Ρ	С
MA1102						
		(Common for all branches of B.E. / B. Tech Programmes)	4	0	0	4
OBJECT	VES					
*	The trad	goal of this course is to achieve conceptual understanding and to itions of traditional calculus	reta	in th	e b	est
*	The	syllabus is designed to provide the basic tools of calculus mainly for	the	purr	ose	e of
	mod	deling the engineering problems mathematically and obtaining solutions.		P 0 P		
*	Mat	rix Algebra is one of the powerful tools to handle practical problems ar	isinc	ı in tł	he f	ield
	of e	ngineering.		,		
*	This	s is a foundation course of Single Variable and multivariable calculus pla	avs a	an im	port	tant
	role	in the understanding of science, engineering, economics and cor	nput	er s	cier	ice.
	amo	ong other disciplines.	•			,
UNIT I		MATRICES				12
Eigenvalu	es a	nd Eigenvectors of a real matrix – Characteristic equation – Prop	ertie	s of	\top	
Eigenvalu	es a	nd Eigenvectors – Cayley-Hamilton theorem – Diagonalization of ma	atrice	es –		
Reduction	ofa	a quadratic form to canonical form by orthogonal transformation – N	latur	e of	С	;01
quadratic	form					
					┶┲	40
	<i>(</i>	CALCULUS OF ONE VARIABLE			+	12
	tunc	tion - Continuity - Derivatives - Differentiation rules - Interval of Increa	sing	and	С	02
decreasing	g tun	ctions – Maxima and Minima - Intervals of concavity and convexity.				
UNIT III		CALCULUS OF SEVERAL VARIABLES				12
Partial dif	ferer	itiation – Homogeneous functions and Euler's theorem – Total deri	vativ	/e –		
Change of	f var	ables – Jacobians – Partial differentiation of implicit functions – Taylor	's se	eries	C	·O3
for functio	ns of	two variables – Maxima and minima of functions of two variables – La	gran	ige's		05
method of	unde	etermined multipliers.				
UNIT IV		INTEGRAL CALCULUS			1	12
Definite a	nd In	definite integrals - Substitution rule - Techniques of Integration - Integration	ratio	n by	T	
parts, Trig	gonor	netric integrals, Trigonometric substitutions, Integration of rational func	ction	s by	С	04
partial frac	ction,	Integration of irrational functions - Improper integrals.				
UNIT V		MULTIPLE INTEGRALS			╧	12
Double in	tegra	Is - Change of order of integration - Double integrals in polar coord	linat	es –	T	
Area encl	losed	by plane curves - Change of variables from Cartesian to polar ir	ו do	uble	с	:05
integrals-1	Friple	integrals – Volume of solids				
		ΤΟΤΑΙ	.:6	0 PE		DS
TEXT BO	OKS					
1. Gr	ewal	B.S., Higher Engineering Mathematicsll, Khanna Publishers, New Dell	hi. 4	3rd F	Editi	ion.
20	14.		, .			, ,
2. Jai	mes	Stewart, "Calculus: Early Transcendental", Cengage Learning, 7th	ו Ec	dition	, N	lew
De	lhi,20	015. [For Units I & III - Sections 2.2, 2.3, 2.5, 2.7(Tangents problems of	only)	, 2.8	, 3.1	1 to
3.6	5, 3.1	1, 4.1, 4.3, 5.1(Area problems only), 5.2, 5.3, 5.4 (excluding net change	e the	eorer	n), {	5.5,

7.2 - 7.4 and 7.8].

REFERENCE BOOKS

- 1. Anton, H, Bivens, I and Davis, S, "Calculus", Wiley, 10th Edition, 2016.
- Jain R.K. and Iyengar S.R.K., —Advanced Engineering Mathematicsll, Narosa Publications, New Delhi, 3rd Edition, 2007.
- Narayanan, S. and Manicavachagom Pillai, T. K., —Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2007.
- 4. Srimantha Pal and Bhunia, S.C, "Engineering Mathematics" Oxford University Press, 2015.
- 5. T. Veerarajan. Engineering Mathematics I, McGraw Hill Education; First edition 2017.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Have a clear idea of matrix algebra pertaining Eigenvalues and Eigenvectors in addition dealing with quadratic forms.
CO2	Understand the concept of limit of a function and apply the same to deal with continuity and derivative of a given function. Apply differentiation to solve maxima and minima problems, which are related to real world problems.
CO3	Have the idea of extension of a function of one variable to several variables. Multivariable functions of real variables are inevitable in engineering.
CO4	Understand the concept of integration through fundamental theorem of calculus. Also acquire skills to evaluate the integrals using the techniques of substitution, partial fraction and integration by parts along with the knowledge of improper integrals.
CO5	Do double and triple integration so that they can handle integrals of higher order which are applied in engineering field.
	MAPPING OF COS WITH POS AND PSOS

COs				PRC	OGRA	M OL	JTCO	MES	(POs))		PROGRAM SPECIF									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3						
CO1	3	3	3	1	2	3	-	-	3	2	3	3	1	2	1						
CO2	3	3	3	2	2	1	-	-	-	-	1	2	1	-	1						
CO3	3	3	3	2	2	1	-	-	-	-	1	2	2	1	1						
CO4	3	3	3	2	2	1	-	-	-	-	1	2	1	1	1						
CO5	3	3	3	2	1	1	-	-	-	-	1	2	2 2 2								

(Common for all branches of B.E. / B. Tech Programmes) 3 0 0 2 OBJECTIVES To educate the students to understand about the elastic property and stress strain diagram. To educate the students about principle of laser and its role in optical fibers and its application as sensors and communication. To teach the students about the quantum concepts and its use to explain black bod radiation, Compton effect, tunnelling electron microscopy and its applications. To make the students to understand the importance of various crystal structures and variou growth techniques. PROPERTIES OF MATTER Elasticity – Stress-strain diagram and its uses - factors affecting elastic modulus and tensile strength - torsional stress and deformations - twisting couple - torsion pendulum: theory and experiment - bonding obeams - bending moment - cantilever. theory and experiment - uniform and non-uniform bending: theory and experiment – Practical applications of modulus of elasticity-I-shaped girders - stress due to bending in beams. UNIT I Lasers : population of energy levels, Einstein's A and B coefficients derivation – resonant cavity, optical amplification (qualitative) – Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction – Industrial and medical applications of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of opt	PH1103	ENGINEERING PHYSICS	L	Т	Ρ	С			
OBJECTIVES To make the students to understand about the elastic property and stress strain diagram. To educate the students about principle of laser and its role in optical fibers and its application as sensors and communication. To teach the students about the heat transfer through solids and liquids. To educate the students about the quantum concepts and its use to explain black bod radiation, Compton effect, tunnelling electron microscopy and its applications. To make the students to understand the importance of various crystal structures and variou growth techniques. UNIT I PROPERTIES OF MATTER Elasticity - Stress-strain diagram and its uses - factors affecting elastic modulus and tensile strength - torsional stress and deformations - twisting couple - torsion pendulum: theory and experiment - bending of beams - bending moment - cantilever: theory and experiment - uniform and non-uniform bending: theory and experiment - Practical applications of modulus of elasticity-I-shaped girders - stress due to bending in beams. UNIT II LASER AND FIBER OPTICS Lasers : population of energy levels, Einstein's A and B coefficients derivation - resonant cavity, optical amplification (qualitative) - Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction - Industrial and medical applications of Laser - Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibers (material, refractive index, mode) - losses associated with optical fibers - Fabrication of Optical fiber-Double crucible method-fibre optic communication system. UNIT II THERMAL PHYSICS Transfer of heat energy - thermal expansion of solids		(Common for all branches of B.E. / B. Tech Programmes)	3	0	0	3			
 To make the students to understand about the elastic property and stress strain diagram. To educate the students about principle of laser and its role in optical fibers and its application as sensors and communication. To teach the students about the heat transfer through solids and liquids. To educate the students about the quantum concepts and its use to explain black bod radiation, Compton effect, tunnelling electron microscopy and its applications. To make the students to understand the importance of various crystal structures and variou growth techniques. UNIT I PROPERTIES OF MATTER Elasticity – Stress-strain diagram and its uses - factors affecting elastic modulus and tensile strength – torsional stress and deformations – twisting couple - torsion pendulum: theory and experiment - bending of beams - bending moment – cantilever: theory and experiment - uniform bending: theory and experiment - Practical applications of modulus of elasticity-Ishaped girders - stress due to bending in beams. UNIT II LASER AND FIBER OPTICS Lasers : population of energy levels, Einstein's A and B coefficients derivation – resonant cavity, optical amplification (qualitative) – Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction – Industrial and medical applications of Dybical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber eptic sensors: pressure and displacement-Industrial and medical applications of potical fiber - benduction – applications of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity – Rectilinear flow of heat- Lee's disc method: theory and experiment - applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT II TH	OBJECTIVES			•					
experiment - bending of beams - bending moment - cantilever: theory and experiment - luniform and non-uniform bending: theory and experiment - Practical applications of modulus of elasticity-I-shaped girders - stress due to bending in beams. CO UNIT II LASER AND FIBER OPTICS Lasers : population of energy levels, Einstein's A and B coefficients derivation - resonant cavity, optical amplification (qualitative) - Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction - Industrial and medical applications of Laser - Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibers (material, refractive index, mode) - losses associated with optical fibers - Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber- Endoscopy-Fiber optic communication system. CO UNIT III THERMAL PHYSICS Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conduction, convection and radiation - heat conductions in solids - thermal mulation - applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. CO UNIT IV QUANTUM PHYSICS Elack body radiation - Planck's theory (derivation) - Compton effect: theory and experimental equations - particle duality - electron diffraction - concept of wave function and its physical significance - Schrödinger's wave equation - time independent and time dependent equations - particle in a one-dimensional rigid box - Electron microscopy. CO UNIT IV CRYSTAL PHYSICS Sin	 To make the students to understand about the elastic property and stress strain diagram. To educate the students about principle of laser and its role in optical fibers and its application as sensors and communication. To teach the students about the heat transfer through solids and liquids. To educate the students about the quantum concepts and its use to explain black bor radiation, Compton effect, tunnelling electron microscopy and its applications. To make the students to understand the importance of various crystal structures and various growth techniques. UNIT I PROPERTIES OF MATTER Elasticity – Stress-strain diagram and its uses - factors affecting elastic modulus and tensile strength – torsional stress and deformations – twisting couple - torsion pendulum: theory and experiment – bending of beams – bending moment – cantilever: theory and experiment – cantilever: theory and experiment – cantilever: 								
UNIT II LASER AND FIBER OPTICS Lasers : population of energy levels, Einstein's A and B coefficients derivation – resonant cavity, optical amplification (qualitative) – Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction – Industrial and medical applications of Laser – Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibres (material, refractive index, mode) – losses associated with optical fibers – Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber- Endoscopy-Fiber optic communication system. CO UNIT III THERMAL PHYSICS Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity –Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat- thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. CO UNIT IV QUANTUM PHYSICS Co Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscopy. CO UNIT IV CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais latti	experiment - I uniform and nc elasticity-I-sha	pending of beams - bending moment – cantilever: theory and expenent n-uniform bending: theory and experiment – Practical applications of mo ped girders - stress due to bending in beams.	rime odul	ent – us of		01			
Lasers : population of energy levels, Einstein's A and B coefficients derivation – resonant cavity, optical amplification (qualitative) – Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction – Industrial and medical applications of Laser – Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibres (material, refractive index, mode) – losses associated with optical fibers – Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber - Endoscopy-Fiber optic communication system. CO UNIT III THERMAL PHYSICS Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conduction, convection and radiation – heat conductions in solids – thermal conduction, convection and radiation – heat conductions in solids – thermal conduction media (series and parallel)-Radial flow of heat– thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. CO UNIT IV QUANTUM PHYSICS Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. CO UNIT IV CRYSTAL PHYSICS CO Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, d	UNIT II	LASER AND FIBER OPTICS				9			
UNIT III THERMAL PHYSICS Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity –Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat– thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. CO UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. CO UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects line defects – Burger	Lasers : popul cavity, optical a and heterojund numerical aper mode) – losse method-fibre o optical fiber- Er	ation of energy levels, Einstein's A and B coefficients derivation – namplification (qualitative) – Nd-YAG Laser-Semiconductor lasers: homostion – Industrial and medical applications of Laser– Fiber optics: provide and acceptance angle - types of optical fibres (material, refractives associated with optical fibers – Fabrication of Optical fiber-Double ptic sensors: pressure and displacement-Industrial and medical application system.	resc ojun orino re ir cru atio	onant ction ciple, ndex, icible ns of	C	02			
Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity –Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat– thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. CO UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscopy. CO UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects line defects – Burger	UNIT III	THERMAL PHYSICS				9			
UNIT IV QUANTUM PHYSICS Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. CO UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects line defects – Burger	Transfer of hea strips - therma conductivity –F through compo applications: he	at energy – thermal expansion of solids and liquids – expansion joints - b I conduction, convection and radiation – heat conductions in solids – Rectilinear flow of heat- Lee's disc method: theory and experiment - co bund media (series and parallel)-Radial flow of heat– thermal insu eat exchangers, refrigerators, oven, Induction furnace and solar water he	ime the ndu Ilatio	etallic ermal oction on – rs.	0	03			
Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. CO UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections; point defects line defects – Burger	UNIT IV	QUANTUM PHYSICS				9			
UNIT V CRYSTAL PHYSICS Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects line defects – Burger	Black body rac verification – v physical signifi equations – (qualitative) - s	liation – Planck's theory (derivation) – Compton effect: theory and expensive vave particle duality – electron diffraction – concept of wave function cance – Schrödinger's wave equation – time independent and time de particle in a one-dimensional rigid box – Electron microscope-tu canning tunnelling microscope-Applications of electron microscopy.	erim an eper unno	ental Id its Indent elling	c	04			
Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects line defects – Burger	UNIT V	CRYSTAL PHYSICS				9			
vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative).	Single crystalli systems, Brav distances coor structures – C vectors, stacki Epitaxial growt	ne, polycrystalline and amorphous materials – single crystals: unit cell ais lattices, directions and planes in a crystal, Miller indices – inter indination number and packing factor for SC, BCC, FCC, HCP and of Graphite structure-crystal imperfections: point defects, line defects – ng faults – growth of single crystals: solution and melt growth tech h-Applications of Single crystal (Qualitative).	I, cr er-p diar - Bi hnic	ystal lanar nond urger ques-	C	05			

TEXT BOOKS															
1.	Bhat	tachar	ya, D	.K. &	Poona	am, T	. "Eng	lineer	ing Pł	nysics"	. Oxfo	rd Univ	versity Pr	ess, 201	9.
2.	Gau	r, R.K.	& Gu	pta, S	S.L. "E	ngine	ering	Phys	ics". [Dhanpa	at Rai I	Publish	ners, 201	7.	
3.	Pano	dey, B.	K. & (Chatu	rvedi,	S. "E	ngine	ering	Phys	ics". C	engag	e Learr	ning India	a, 2019.	
REFE	ERENCE BOOKS														
1.	Halliday, D., Resnick, R. & Walker, J. "Principles of Physics". Wiley, 2015.														
2.	Serway, R.A. & Jewett, J.W. "Physics for Scientists and Engineers". Cengage Learning,														earning,
	2019.														
3.	Tipler, P.A. & Mosca, G. "Physics for Scientists and Engineers with Modern Physics'.														
	W.H.Freeman, 2007.														
COUR	RSE OUTCOMES														
Upon	completion of the course, students will be able to														
CO1	Gain k	nowled	dge or	n the I	basics	s of pr	operti	ies of	matte	er and	its app	lication	IS,		
<u> </u>	Acquir	e knov	vledge	e on tl	ne coi	ncept	s of w	aves	and c	ptical	device	s and t	their app	lications	in fibre
002	optics.														
CO2	Have	adequ	ate k	nowle	edge	on th	e co	ncept	s of	therma	al prop	perties	of mate	erials an	d their
003	applica	ations i	n exp	ansio	n joint	ts and	l heat	exch	anger	s.					
CO4	Get kr	nowled	lge o	n adv	ance	d phy	/sics	conce	epts o	of qua	ntum	theory	and its	applicat	ions in
004	tunneli	ng mic	rosco	pes, a	and										
CO5	Unders	stand t	he ba	sics o	of crys	tals, t	heir s	tructu	ires a	nd diffe	erent c	rystal g	growth te	chnique	S.
				Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	S			
							тоо						PROG	RAM SP	ECIFIC
COs				PRO	GRA				(PUS)				OUTC	OMES (I	PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	2	1	3	2	1	2	1	2	2
CO2	3	3	3	2	3	2	2	1	2	2	2	1	2	3	2
CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	1	2
CO4	3	3	2	2	2	1	1	1	1	1	1	3	2 2 1		
CO5	3	3	3	3	2	1	2	1	3	1	1	3	3	2	2

CY1104	ENGINEERING CHEMISTRY	L	Т	P C
	(Common for all branches of B.E. / B. Tech Programmes)	3	0	0 3
OBJECTIVES			L	ł
Principl	es of water characterization and treatment for industrial purposes.			
Principl	es and applications of surface chemistry and catalysis.			
Phase I	rule and various types of alloys.			
 Various 	types of fuels, applications and combustion.			
 Conven 	tional and non-conventional energy sources and energy storage device			
UNIT I	WATER AND ITS TREATMENT			9
Hardness of w	ater – Types – Expression of hardness – Units – Estimation of hard	Ines	s by	
EDTA method	- Numerical problems on EDTA method - Boiler troubles (scale and	sluo	dge,	
caustic embritt	lement , boiler corrosion, priming and foaming) – Treatment of boiler fee	əd w	ater	CO1
– Internal tre	eatment (carbonate, phosphate, colloidal, sodium aluminate and	ca	lgon	
conditioning) –	External treatment – Ion exchange process, Zeolite process – Desalir	natio	n of	
brackish water	by reverse Osmosis.			
	SURFACE CHEMISTRY AND CATALYSIS			9
Surface chem	istry: Types of adsorption – Adsorption of gases on solids – Adsorption	of sc	lute	
from solutions	– Adsorption isotherms – Freundlich's adsorption isotherm – La	ngm	uir′s	
adsorption is	otherm – Kinetics of uni-molecular surface reactions – Adsorp	otion	in	000
	by - Applications of adsorption in pollution abatement using PAC.	aina	and	C02
Catalysis: Cat	alyst – Types of calalysis – Criteria – Contact theory – Calalytic poison	ning tolvr	and	
Enzyme cotoly	sie Michaelie Monton equation	larys	<u> 12 –</u>	
	PHASE BILLE AND ALLOYS			9
Phase rule: Int	troduction – Definition of terms with examples – One component system	_ W	ater	
system – Red	luced phase rule – Thermal analysis and cooling curves – Two co	mpoi	nent	
svstems – Lea	d-silver system – Pattinson process.			
Alloys: Introdu	uction – Definition – Properties of alloys – Significance of alloying – F	unct	ions	CO3
and effect of a	lloying elements – Nichrome, Alnico, Stainless steel (18/8) – Heat trea	tmer	nt of	
steel – Non-fe	rrous alloys – Brass and bronze.			
UNIT IV	FUELS AND COMBUSTION			9
Fuels: Introduc	ction – classification of fuels – Comparison of solid, liquid, gaseous fuel	s – (Coal	
- Analysis of	coal (proximate and ultimate) Carbonization - Manufacture of meta	allurç	jical	
coke (Otto Ho	offmann method) – Petroleum – Cracking – Manufacture of synthet	ic po	etrol	
(Bergius proce	ess, Fischer Tropsch Process) – Knocking – Octane number – Dies	sel c	oil —	
Cetane numbe	r – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG)	– Pc	wer	CO4
alcohol and bic	diesel.			
Combustion of	of fuels: Introduction – Calorific value – Higher and lower calorific v	/alue	es −	
Theoretical ca	liculation of calorific value – Ignition temperature – Spontaneous	ign	ition	
temperature –	Explosive range – Flue gas analysis by Orsat Method.			
	NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVIC	ES		9
	y - rission and lusion reactions - Differences - Unain reactions -	INUC	rear	
Brooder react	issuication of reactors – Light water nuclear reactor for power gene		лі — Іс	COF
	or – Solar energy conversion – Solar cells – Wind energy – Fuel tion fuel cell Batteries – Types of batteries – Alkeline batteries – La	ueu A bee	is – acid	005
Nickel-cadmiur	n and Lithium batteries	,au-a	iciu,	
Nickei-caumiur	n and Lithium ballenes.			

TEXT	BOOKS	
1.	P.C.Jain, Monica Jain, "Engineering Chemistry" 17th Ed. Dhanpa	at Rai Pub. Co., New
	Delhi,(2015).	
2.	S.S. Dara, S.S. Umare, "A text book of Engineering Chemistry" S.Cha	nd & Co.Ltd., New Delhi
	(2020).	
3.	S. Vairam, P. Kalyani and Suba Ramesh, "Engineering Chemistry", V	Viley India (P) Ltd. New
	Delhi, (2018).	
4.	P. Kannan, A. Ravikrishnan, "Engineering Chemistry", Sri Kris	hna Hi-tech Publishing
	Company (P) Ltd. Chennai, (2009).	
REFE	RENCE BOOKS	
1.	B.K.Sharma "Engineering chemistry" Krishna Prakasan Media (P) Ltd.,	Meerut (2001).
2.	B. Sivasankar "Engineering Chemistry" Tata McGraw–Hill Pub.Co.Ltd,	New Delhi (2008).
3.	Prasanta Rath, "Engineering Chemistry", Cengage Learning India (P) L	.td., Delhi, (2015).
4.	Shikha Agarwal, "Engineering Chemistry-Fundamentals and Ap	oplications", Cambridge
	University Press, Delhi, (2015).	
5.	A. Pahari, B. Chauhan, "Engineering Chemistry", Firewall Media., New	Delhi., (2010).
6.	Sheik Mideen., Engineering Chemistry, Airwalk Publications, Chennai (2018).
COUR	SE OUTCOMES	
Upon	completion of the course, students will be able to	
CO1	Able to understand impurities in industrial water, boiler troubles, international	al and external treatment
001	methods of purifying water.	
CO2	Able to understand concepts of absorption, adsorption, adsorption is	sotherms, application of
002	adsorption for pollution abatement, catalysis and enzyme kinetics.	
	Able to recognize significance of alloying, functions of alloying eleme	ents and types of alloys,
CO3	uses of alloys. They should be acquainted with phase rule and	reduced phase and its
	applications in alloying.	
CO4	Able to identify various types of fuels, properties, uses and analysis of	of fuels. They should be
004	able to understand combustion of fuels, method of preparation of bio-di	esel, synthetic petrol.
	Able to understand conventional, non-conventional energy sources, nu	uclear fission and fusion,
CO5	power generation by nuclear reactor, wind, solar energy and prepa	aration, uses of various
	batteries.	
	MAPPING OF COS WITH POS AND PSOS	
		PROGRAM SPECIFIC

COs				PRC	OGRA	M OL	лтсо	MES	(POs))			PROGI OUTC	PROGRAM SPECIFIC OUTCOMES (PSOs)						
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PSO1	PSO2	PSO3					
CO1	3	3	3	3	3	2	3	2	2	2	2	2	2	1	2					
CO2	3	3	2	2	2	2	2	1	1	1	1	2	2	1	1					
CO3	3	3	3	3	3	2	2	1	2	2	2	2	2	1	2					
CO4	3	3	3	2	2	3	3	2	2	3	2	2	3	1	2					
CO5	3	2	3	3	3	3	3	2	2	2	2	2	3	2	3					

GE1105 PROBLEM SOLVING AND PYTHON PROGRAMMING L T P								
	(Common for all branches of B.E. / B. Tech Programmes)	3	0	0	3			
OBJECTIVES								
 To kno 	w the basics of algorithmic problem solving							
 To writ 	e simple python programs							
To dev	elop python program by using control structures and functions							
🛠 To use	e python predefined data structures							
 To writ 	e file-based program							
UNIT I	ALGORITHMIC PROBLEM SOLVING				9			
Algorithms, B	uilding blocks of algorithms: statements, state, control flow, functions, I	Nota	tion:					
pseudo code	e, flow chart, programming language, Algorithmic problem solving	g: E	asic					
algorithms, flo	owcharts and pseudocode for sequential, decision processing and	itera	ative	С	01			
processing st	rategies, Illustrative problems: find minimum in a list, insert a card in	a li	st of					
sorted cards,	guess an integer number in a range, Towers of Hanoi.							
UNIT II	INTRODUCTION TO PYTHON				9			
Python Introd	uction, Technical Strength of Python, Python interpreter and interactiv	e m	ode,		L			
Introduction to	o colab , pycharm and jupyter idle(s) ,Values and types: int, float, boolea	n, st	ring,					
and list; Built-	in data types, variables, Literals, Constants, statements, Operators: Ass	ignm	nent,	С	02			
Arithmetic, Re	elational, Logical, Bitwise operators and their precedence, Expressior	ns, t	uple					
assignment, A	ccepting input from Console, printing statements, Simple Python program	ms.						
UNIT III	CONTROL FLOW, FUNCTIONS AND STRINGS				9			
Conditionals:	Boolean values and operators, conditional (if), alternative (if-else),	cha	ined		L			
conditional (if	elif-else); Iteration: while, for; Loop manipulation using pass, break, c	conti	nue,					
and else; Moo	dules and Functions: function definition and use, flow of execution, par	rame	eters					
and argumen	ts, local and global scope, return values, function composition, re	ecurs	sion.	С	03			
Strings: string	slices, immutability, string functions and methods, string module; III	ustra	ative					
programs: squ	uare root, gcd, exponentiation, sum an array of numbers, linear search	h, bi	nary					
search.								
UNIT IV	LISTS, TUPLES, DICTIONARIES			•	9			
Lists: Defining	g list and list slicing, list operations, list slices, list methods, list l	oop	list					
Manipulation,	mutability, aliasing, cloning lists, list parameters, lists as arrays. Tuple	es: t	uple					
assignment, t	uple as return value, tuple Manipulation; Dictionaries: operations and r	neth	ods;	С	04			
advanced list	processing - list comprehension; Illustrative programs: selection sort,	inse	rtion					
sort, merge so	ort, histogram.							
UNIT V	FILES, MODULES, PACKAGES				9			
Files and exce	eption: Concept of Files, Text Files; File opening in various modes and c	losir	ng of		<u>. </u>			
a file, Format	Operators, Reading from a file, Writing onto a file, File functions- open()	, clo	se(),					
read(),readline	e(), readlines(),write(), writelines(),tell(),seek(), Command Line argument	s; E	rrors	С	05			
and exception	ns: handling exceptions; modules, packages; introduction to numpy, m	atplo	otlib.					
Illustrative pro	grams: word count, copy a file.							
L				<u> </u>				

TEXT	BOOK	5																			
1.	Allen	B. Do	wney	, "Thi	ink P	ython	: Hov	v to ⁻	Think	Like a	a Com	nputer	Scientis	t", 2 nd	edition,						
	Update	ed for	Pytho	on 3, S	Shroff	/OʻRe	illy Pu	ublish	ers, 2	016											
	(http://	green	teapre	ess.co	om/wp	o/think	cpytho	on/)													
2.	Guido	van	Rossi	um a	nd Fr	ed L.	Dral	ke Jr,	. — /	An Intr	oducti	on to	Python	– Revis	ed and						
	update	ed for	Pytho	n 3.2	, Netw	vork T	heory	/ Ltd.,	2011												
3.	Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford University																				
	Press, 2019.																				
REFE	ERENCE BOOKS																				
1.	. John V Guttag, —Introduction to Computation and Programming Using Python", Revised																				
	and expanded Edition, MIT Press, 2013																				
2.	Rober	t Sec	lgewic	ck, K	evin	Wayr	ne, R	Robert	Don	idero,	—Intr	oductio	on to P	rogramn	ning in						
	Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.														16.						
3.	Timoth	ny A. E	Budd,	—Exp	oloring	g Pyth	non∥, l	Mc-G	raw H	ill Edu	cation	(India)	Private	Ltd.,, 20 ⁻	15.						
4.	Kenne	th A.	Lam	bert,	—Fu	ndam	entals	s of I	⊃ytho	n: Firs	t Prog	gramsl	, CENG	AGE Le	earning,						
	2012.																				
5.	Charle	s Die	erbach	n, —I	ntrod	uction	to	Comp	outer	Scienc	e usi	ng Py	thon: A	Compu	tational						
	Proble	m-So	lving F	ocus	, Wile	y Indi	a Edi	Problem-Solving Focus, Wiley India Edition, 2013.													
	Proplem-Solving Focus, whey india Edition, 2013.																				
6.	Paul G	Gries, .	Jennif	er Ca	mpbe	ll and	Jaso	n Mor	ntojo,	—Prac	ctical F	Program	nming: A	n Introdu	uction.						
6. COUR	Paul G	Gries, (TCON	Jennif IES	er Ca	mpbe	II and	Jaso	n Mor	ntojo,	—Prac	ctical F	Progran	nming: A	n Introdu	uction.						
6. COUR Upon	Paul G SE OU comple	Bries, TCON Stion of	Jennif IES of the	er Ca cour	mpbe se, st	ll and t uden	Jaso i ts wi	n Mor II be a	ntojo, able t e	—Prac	ctical F	Program	nming: A	ın Introdi	uction.						
6. COUR Upon CO1	Paul G SE OU comple Develo	TCON TCON tion of p algo	Jennif IES of the	er Ca cour iic sol	mpbe se, s t utions	t uden to si	Jaso I ts wi l	n Mor II be a comp	ntojo, able t e utatio	—Prac o nal pro	ctical F	Progran	nming: A	ın Introdu	uction.						
6. COUR Upon CO1 CO2	Paul G SE OU comple Develo Develo	TCON TCON etion of op algo op sim	Jennif IES of the orithm	er Ca cour iic sol	mpbe se, st utions appl	II and t uden s to sin	Jaso I ts wi l mple o n in py	n Mor II be a comp ython	ntojo, able t e utatio	—Prac o nal pro	tical F	Progran	nming: A	n Introdu	uction.						
6. COUR Upon CO1 CO2 CO3	Paul G SE OU comple Develo Develo	TCON TCON etion of op algo op sim	Jennif NES of the orithm ple co	er Ca cour ic sol	mpbe se, si utions appl m by a	II and tuden s to sin ication	Jaso Its will mple n in py ng co	n Mor II be a comp ython ntrol s	ntojo, able t utatio	—Prac o nal pro	blems	Program	nming: A	n Introdu	uction.						
6. COUR Upon CO1 CO2 CO3 CO4	Paul G SE OU comple Develo Develo Repres	Bries, C TCON etion of op algo op sim op pytl sent c	Jennif IES of the orithm ple co hon pl ompo	er Ca cour ic sol onsole rograr und d	mpbe se, si utions appl m by a ata us	II and tuden is to sin ication applyi sing p	Jaso Its will mple n in py ng co	n Mor II be a comp ython ntrol s	ntojo, able ta utatio structu tuple:	—Prac o nal pro ure and s, and	blems d deco	Program mpose naries.	nming: A	n Introdu	action.						
6. COUR Upon CO1 CO2 CO3 CO4 CO5	Paul G SE OU comple Develo Develo Repres Read a	Gries, C TCOM etion of op algo op sim op sytl sent c and w	Jennif IES of the orithm ple co hon pl ompo rite da	er Ca cour iic sol onsole rograr und d	mpbe se, st utions appl m by a ata us m/to f	II and tuden s to sin ication applyi sing p	Jaso Its will mple n in py ng co ython	n Mor II be a comp ython ntrol s i lists, ion.	ntojo, able ta utatio structu tuple:	—Prac o nal pro ure and s, and	blems deco	Program mpose naries.	nming: A	n Introdu	action.						
6. COUR Upon CO1 CO2 CO3 CO4 CO5	Paul G SE OU comple Develo Develo Repres Read a	Bries, C TCOM etion of op algo op sim op pytl sent c and w	Jennif IES of the orithm ple co hon pl ompo rite da	er Ca cour iic sol onsole rograr und d ata fro	mpbe se, st utions appl m by a ata us m/to t	II and tuden ication applyi sing p iiles ir	Jaso Its will mple in in py ng co ython python PF CO	n Mor II be a comp ython ntrol s lists, ion. Ds WI	able to utatio structu tuple:	Prace o nal pro ure and s, and Ds AN	blems deco dictior	mpose naries.	nming: A	n Introdu	action.						
6. COUR Upon CO1 CO2 CO3 CO4 CO5	Paul G SE OU comple Develo Develo Repres Read a	Bries, C TCOM etion of op algo op sim op pytl sent c and w	Jennif IES of the orithm ple co hon pl ompo rite da	er Ca cour iic sol onsole rograr und d ata fro	mpbe se, st utions appl m by a ata us m/to t	II and tuden ication applyi sing p iiles ir NG C	Jaso Its will mple of n in py ng co ython o Pyth DF CC	n Mor II be a comp ython ntrol s lists, ion. Ds WI	able to utatio structu tuple:	Prace o nal pro ure and s, and Ds ANI	blems deco dictior	mpose aries.	nming: A program	n Introdu	actions.						
6. COUR Upon CO1 CO2 CO3 CO4 CO5 COs	Paul G SE OU comple Develo Develo Repres Read a	Bries, C TCON etion of op algo op sim op pytl sent c and w	Jennif IES of the orithm ple co hon pl ompo rite da	er Ca cour iic sol onsole rograr und d ata fro N PRC	mpbe se, sf utions appl m by a ata us m/to f IAPPI	II and tuden ication applyi sing p files ir NG C	Jaso Its will mple of n in py ng co yython n Pyth DF CC JTCO	n Mor II be a comp ython ntrol s lists, on. Ds WI ⁻ MES	able to utatio structu tuple: TH PC (POs)	Prace o nal pro ure and s, and Ds AN	blems d deco dictior	Program mpose haries.	program	n Introdu	ections.						
6. COUR Upon CO1 CO2 CO3 CO4 CO5 COs	Paul G SE OU comple Develo Develo Repres Read a	Fries, Contraction of the palge of the palge of	Jennif IES of the orithm ple co hon pl ompo rite da	er Ca cour ic sol onsole rograr und d ata fro N PRC	mpbe se, sf utions appl m by a ata us m/to f IAPPI DGRA	Il and tuden to sin applyi sing p files ir NG C M OL	Jaso Its will mple of n in py ng co ython of Pyth DF CO JTCO	n Mor II be a comp ython ntrol s lists, on. Ds WI MES PO8	able to utatio structu tuple: TH PC (POs)	Prace o nal pro ure and s, and Ds ANI	blems d deco dictior D PSO	Program mpose haries. P S	program PROGI OUTC PSO1	n Introdu	ECIFIC PSOs)						
6. COUR Upon CO1 CO2 CO3 CO4 CO5 CO5	Paul G SE OU comple Develo Develo Repres Read a Po1 3	Fries, Contraction of the procession of the proc	Jennif IES of the orithm ple co hon pl ompo rite da	er Ca cour ic sol onsole rograr und d ata fro N PRC PO4 3	mpbe se, sf utions appl n by a ata us m/to f IAPPI DGRA	Il and tuden ication applyi sing p iles ir NG C M OL PO6	Jaso Its will mple of n in py ng co yython o Pyth DF CC JTCO	n Mor II be a comp ython ntrol s lists, on. os WI MES PO8	able to utatio structu tuple: TH PC (POs) PO9	Prace o nal pro ure and s, and Ds ANI	blems d deco dictior D PSO PO11 2	Program mpose haries. Po12 2	program PROGI OUTC PSO1 3	n Introdu n into fun RAM SP OMES (I PS02 2	ECIFIC PSOs) 3						
6. COUR Upon CO1 CO2 CO3 CO4 CO5 CO5 CO5	Paul G SE OU comple Develo Develo Repres Read a Po1 3 3	PO2	Jennif IES of the orithm ple cc hon pl ompo rite da PO3 3 3	er Ca cour iic sol onsole rograr und d ata fro N PRC PO4 3 3	mpbe se, sf utions appl m by a ata us m/to f IAPPI OGRA PO5 2 2	Il and tuden ication applyi sing p iles ir NG C M OL PO6	Jaso Its will mple of n in py ng co yython n Pyth DF CC JTCO PO7 -	n Mor II be a comp ython ntrol s i lists, ion. DS WI MES PO8 -	able to utatio structu tuple: TH PC (POs) PO9 -	Prace o nal pro ure and s, and Ds ANI P010 2 2	blems d deco diction D PSO PO11 2 2	Program mpose haries. PS PO12 2 2	PROGI OUTC PSO1 3 3	n Introdu n into fun RAM SP OMES (I PSO2 2 2 2	ECIFIC PSOs) PSO3 3 3						
6. COUR Upon CO1 CO2 CO3 CO4 CO5 CO5 CO5 CO5	Paul G SE OU comple Develo Develo Repres Read a Po1 3 3 3	PO2 3 3 3 3	Jennif IES of the orithm ple cc hon pl ompo rite da PO3 3 3 3 3	er Ca cour iic sol onsole rograr und d ata fro N PRC PO4 3 3 3	mpbe se, sf utions appl n by a ata us m/to f IAPPI OGRA PO5 2 2 2 2	Il and tuden s to sin ication applyi sing p iiles ir NG C M OL PO6 - -	Jaso Its will mple of n in py ng co ython Python Python F CC JTCO	n Mor II be a comp ython ntrol s lists, on. DS WI MES PO8 - - -	able to utatio structu tuple: TH PC (POs) PO9 - -	Prace o nal pro ure and s, and Ds ANI PO10 2 2 2	blems d deco diction D PSO PO11 2 2 2	Program mpose haries. Po12 2 2 2	nming: A program PROGI OUTC PSO1 3 3 3 3	n Introdu n into fun RAM SP OMES (I PSO2 2 2 2 2 2	ECIFIC PSOs) PSO3 3 3 3 3						
6. COUR Upon CO1 CO2 CO3 CO4 CO5 CO5 CO5 CO5 CO5 CO5	Paul G SE OU comple Develo Develo Repres Read a Read a 901 3 3 3 3 3	PO2 3 3 3 3 3	Jennif IES of the orithm ple cc hon pl ompo rite da 3 3 3 3 3 3	er Ca cour ic sol onsole rograr und d ita fro W PRC PO4 3 3 3 3 3	mpbe se, st utions appl n by a ata us m/to t IAPPI OGRA PO5 2 2 2 2 2 2	Il and tuden s to sin ication applyi sing p iiles ir NG C M OL PO6 - - - -	Jaso Its will mple of n in py ng co ython Python Python F CC JTCO P07 - - - -	n Mor II be a comp ython ntrol s lists, on. os WI MES PO8 - - - -	able to utatio structu tuple: TH PC (POs) PO9 - - - -	Prace o nal pro ure and s, and Ds ANI PO10 2 2 2 2 2	blems d deco dictior D PSO PO11 2 2 2 2 2	Program mpose haries. Po12 2 2 2 2 2	nming: A program PROGI OUTC PSO1 3 3 3 3 3 3	n Introdu n into fun OMES (I PSO2 2 2 2 2 2 2 2 2 2	ECIFIC PSOs) PSO3 3 3 3 3 3 3						

GE1106 ENGINEERING GRAPHICS L T P										
	(Common for all branches of B.E. / B. Tech Programmes)	2	0	4	4					
OBJECTIVES										
 To deve 	elop in students, graphic skills for communication of concepts, ideas	and	d de	sign	of					
Enginee	ering products									
 To expo 	se them to existing national standards related to technical drawings.				n					
CONCEPTS A	ND CONVENTIONS (Not for Examination)				1					
Importance of graphics in engineering applications – Use of drafting instruments – BIS										
conventions an	d specifications - Size, layout and folding of drawing sheets - Lette	ring	and							
dimensioning.										
UNIT I	PLANE CURVES AND FREEHAND SKETCHING			7-	⊦12					
Basic Geometr	ical constructions, Curves used in engineering practices: Conics – Cons	struc	ction							
of ellipse, par	abola and hyperbola by eccentricity method – Construction of cy	ycloi	d –							
construction of	involutes of square and circle - Drawing of tangents and normal to th	e at	ove							
curves.				С	01					
Visualization co	oncepts and Free Hand sketching: Visualization principles –Represen	tatio	n of							
Three-Dimension	onal objects - Layout of views- Freehand sketching of multiple vie	ws	from							
pictorial views of	of objects									
UNIT II	PROJECTION OF POINTS, LINES AND PLANE SURFACE			6-	⊦12					
Orthographic p	rojection- principles-Principal Planes-First angle projection-projection o	of po	ints.							
Projection of st	raight lines (only First angle projections) inclined to both the principal	plan	ies -							
Determination of	of true lengths and true inclinations by rotating line method and traces P	rojec	ction	С	02					
of planes (poly	gonal and circular surfaces) inclined to both the principal planes by	rota	ating							
object method.										
UNIT III	PROJECTION OF SOLIDS			5-	⊦12					
Projection of si	mple solids like prisms, pyramids, cylinder, cone and truncated solids v	vhen	the	С	03					
axis is inclined	to one of the principal planes by rotating object method.									
UNIT IV	PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT			6-	⊦12					
	OFSURFACES									
Sectioning of a	bove solids in simple vertical position when the cutting plane is incline	ed to	the							
one of the prin	cipal planes and perpendicular to the other - obtaining true shape of	sec	tion.	С	04					
Development o	f lateral surfaces of simple and sectioned solids - Prisms, pyramids of	cylin	ders		• •					
and cones.										
UNIT V	ISOMETRIC AND PERSPECTIVE PROJECTIONS			6-	⊦12					
Principles of is	ometric projection – isometric scale –Isometric projections of simple sc	olids	and							
truncated solid	s - Prisms, pyramids, cylinders, cones- combination of two solid of	oject	s in	C	05					
simple vertical	positions - Perspective projection of simple solids-Prisms, pyram	nids	and							
cylinders by visual ray method.										
TOTAL : 90 PERIC										

TEXT BOOKS

- 1. Natarajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, Twenty Ninth Edition 2016
- Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2011.

REFERENCE BOOKS

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2019.
- 2. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.
- 3. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2018.
- Luzzader, Warren.J. and Duff, John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Comput er Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 5. N S Parthasarathy and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.
- 6. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.

COUR	COURSE OUTCOMES															
Upon	con	npleti	on of	the co	urse,	stude	nts wi	ll be a	ble to							
CO1	Understand the fundamentals and standards of Engineering graphics															
CO2	Pe	erform freehand sketching of basic geometrical constructions and multiple views of objects														
CO3	Un	nderstand the concept of orthographic projections of lines and plane surfaces														
CO4	Dra	raw the projections of section of solids and development of surfaces														
CO5	Vis	ualize	e and t	o proje	ect isor	metric	and pe	erspec	tive se	ctions	of sim	ple so	olids			
	MAPPING OF COs WITH POs AND PSOs															
C06					PROG		סדוור	JMES	$(P \cap e)$				PRO	GRAM	SPEC	CIFIC
003					NOG		50100		(1 0 3)				OUT	COME	ES (PS	iOs)
		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	2	1	2	1	1	-	-	3	3	2	3	2	2	-
CO2		3	1	2	2	1	1	-	-	3	3	2	3	2	2	-
CO3		3	1	1	3	1	1	-	-	3	3	2	3	2	2	-
CO4		3	1	1	3	1	1	-	-	3	3	2	3	2	2	-
CO5		3	1	2	3	1	1	-	-	3	3	2	3	2	2	-

GE110	07	PYTHON PROGRAMMING LABORATORY	L	Т	Ρ	С
		(Common for all branches of B.E. / B. Tech Programmes)	0	0	4	2
OBJE	CTIVES		1	1		
*	To write	e, test, and debug simple Python programs.				
*	To impl	ement Python programs with conditionals and loops.				
*	Use fur	ctions for structuring Python programs.				
*	Repres	ent compound data using Python lists, tuples, and dictionaries.				
*	Read a	nd write data from/to files in Python.				
LIST (OF EXPE	RIMENTS				
1.	Write a	n algorithm and draw flowchart illustrating mail merge concept.				
2.	Write a	n algorithm, draw flowchart and write pseudo code for a real life or sci	entif	ic or		
	technic	al problems				
3.	Scientif	ic problem-solving using decision making and looping.			С	01
	•	Armstrong number, palindrome of a number, Perfect number.				
4.	Simple	programming for one dimensional and two-dimensional arrays.				
	•	Transpose, addition, multiplication, scalar, determinant of a matrix				
5.	Program	n to explore string functions and recursive functions.				
6.	Utilizing	f 'Functions' in Python				
	•	Find mean, median, mode for the given set of numbers in a list.				
	•	Write a function dups to find all duplicates in the list.			0	$\cap 2$
	•	Write a function unique to find all the unique elements of a list.				02
	•	Write function to compute gcd, Icm of two numbers.				
7.	Demon	strate the use of Dictionaries and tuples with sample programs.				
8.	Implem	ent Searching Operations: Linear and Binary Search.				
9.	To sort	the 'n' numbers using: Selection, Merge sort and Insertion Sort.				
10	. Find the	e most frequent words in a text of file using command line arguments.			0	02
11	. Demon	strate Exceptions in Python.				03
12	. Applica	tions: Implementing GUI using turtle, pygame.				
		ΤΟΤΑ	L: 60	0 PE	RIO	DS
REFE	RENCE	BOOKS				
1.	Reema	Thareja, Python Programming: Using Problem Solving Approach, O	xford	d Un	iver	sity
	Press, 2	2019				
2.	Allen B	. Downey , " Think Python: How to Think Like a Computer Scientist",	Seco	ond	Editi	on,
	Update	d for Python 3, Shroff/O'Reilly Publishers, 2016.				
3.	Shroff "	Learning Python: Powerful Object-Oriented Programming; Fifth edition, 2	2013	8.		
4.	David I	M.Baezly "Python Essential Reference". Addison-Wesley Professional;	Fou	urth	editi	on,
	2009					

5. David M. Baezly "Python Cookbook" O'Reilly Media; Third edition (June 1, 2013)

WEB	REFER	ENCE	S												
1.	http://v	vww.ee	dx.org)											
COUR	SE OU	тсом	ES												
Upon	Upon completion of the course, students will be able to														
CO1 Develop simple console applications through python with control structure and functions															
CO2	Use python built in data structures like lists, tuples, and dictionaries for representing compound														
	data.	data.													
CO3	CO3 Read and write data from/to files in Python and applications of python.														
				Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	S			
								MEG					PROG	RAM SP	ECIFIC
COs				FNU	GRA				(FUS)				OUTC	OMES (I	PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	3	3	3	2	-	-	-	-	2	2	2	3	2	3
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	2	3
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	2	3

BS1108	PHYSICS AND CHEMISTRY LABORATORY	L	Т	Ρ	С					
	(Common for all branches of B.E. / B. Tech Programmes)	0	0	4	2					
OBJECT	IVES									
The stud	ents will be trained to perform experiments to study the following.									
🛠 Th	ne Properties of Matter									
🛠 Tł	ne Optical properties, Characteristics of Lasers & Optical Fibre									
♦ El	ectrical & Thermal properties of Materials									
🛠 Ei	nable the students to enhance accuracy in experimental measurements.									
To make the student to acquire practical skills in the determination of water quality parameters										
through volumetric analysis										
🛠 In	strumental method of analysis such as potentiometry, conductometry and pHr	netry	ý							
	LIST OF EXPERIMENTS – PHYSICS									
	(A minimum of 5 experiments to be performed from the given list)									
1. D	etermination of Young's modulus of the material of the given beam by Non-u	unifo	rm t	benc	ling					
m	ethod.									
2. D	etermination of rigidity modulus of the material of the given wire using torsion (penc	lulur	n.						
3. D	etermination of wavelength of mercury spectra using Spectrometer and grating	j .								
4. D	etermination of dispersive power of prism using Spectrometer.									
5. (a) Determination of wavelength and particle size using a laser.									

- (b) Determination of numerical aperture and acceptance angle of an optical fibre.
- (c) Determination of width of the groove of compact disc using laser.
- 6. Determination of Young's modulus of the material of the given beam by uniform bending method.
 - 7. Determination of energy band gap of the semiconductor.
 - 8. Determination of coefficient of thermal conductivity of the given bad conductor using Lee's disc.

DEMONSTRATION EXPERIMENT

1. Determination of thickness of a thin sheet / wire - Air wedge method

LIST OF EXPERIMENTS - CHEMISTRY

(A minimum of 6 experiments to be performed from the given list)

- 1. Estimation of HCI using Na2CO3 as primary standard and determination of alkalinity in water sample.
- 2. Determination of total, temporary & permanent hardness of water by EDTA method.
- 3. Determination of DO content of water sample by Winkler's method.
- 4. Determination of chloride content of water sample by argentometric method.
- 5. Estimation of copper content of the given solution by lodometry.
- 6. Determination of strength of given hydrochloric acid using pH meter.
- 7. Determination of strength of acids in a mixture of acids using conductivity meter.
- 8. Estimation of iron content of the given solution using potentiometer.
- 9. Determination of molecular weight of polyvinyl alcohol using Ostwald viscometer.
- 10. Conductometric titration of strong acid vs strong base.

DEMONSTRATION EXPERIMENTS

- 1. Estimation of iron content of the water sample using spectrophotometer (1,10- Phenanthroline / thiocyanate method).
- 2. Estimation of sodium and potassium present in water using flame photometer.

COUR	SE OUT	COME	ES															
Upon o	complet	tion of	the c	ours	e, the	stud	ents	shou	ld be									
	Able to	o unde	erstan	d the	conc	ept a	bout	the b	asic	propert	ties of	matte	r like str	ess, stra	ain and			
	types of	of mod	uli.															
CO1	Able to	under	stand	the p	roced	ure to	o estin	nate t	he an	nount c	of disso	olved o	xygen pr	resent in	the			
	water.																	
	Able t	o und	ersta	nd th	e cor	ncept	of c	ptics	like	reflect	ion, re	efractic	n, diffra	iction by	' using			
	spectro	ometer	grati	ng.														
CO2 Able to understand the concept about measuring the conductance of strong acid										acid and	strong							
	base and mixture of acids by using conductivity meter.																	
	Able to understand the thermal properties of solids and to calculate thermal conductivity of a																	
	bad co	nducto	or.															
CO3	Able to	Able to understand the principle and procedure involved in the amount of chloride present in																
	the given sample of water.																	
	Able to understand the concept of microscope and its applications in determining the moduli.																	
CO4	Able to	undei	rstanc	I the c	once	ot of c	detern	nining	the e	mf val	ues by	using	potentio	meter.				
	Able to	calcu	late th	ne par	ticle s	ize of	f poly	crysta	alline	solids.								
CO5	Able to	o unde	erstan	d the	cond	ept c	of det	ermin	ing th	ne pH	value	and s	trength	of a give	en acid			
	sample	e by us	ing pl	H met	er.													
				M	APPII	NG O	F CO	s WIT	Н РО	s ANC	PSO:	S						
							TOOL						PROG	RAM SP	ECIFIC			
COs				PRO	GRA			VIE5 ((POS)				ουτς	OMES (I	PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	3	1	2	2	2	1	1	1	3	2	2	3	2	1	2			
CO2	3	1	2	1	1	1	1	1	2	1	1	2	2	1	2			
CO3	3	1	2	1	2	2	2	1	2	1	1	1	2	1	2			
CO4	3	2	1	1	2	1	1	1	2	1	1	2	2	2 1				
CO5	3	2	1	1	1	2	2	1	2	1	2	1	2	2	1			

HS1201	PROFESSIONAL ENGLISH	L	Т	Ρ	С					
	(Common for all branches of B.E. / B. Tech Programmes)	3	0	0	3					
OBJECTIVE	S									
 Deve 	op strategies and skills to enhance their ability to read and comprehend e	engii	heer	ng a	and					
techn	ology texts.									
 Foste 	r their ability to write convincing job applications and effective reports.									
 Deve 	op their speaking skills to make technical presentations, participate in grou	ip di	SCUS	sior	าร.					
Stren	gthen their listening skill which will help them comprehend lectures and talk	ks in	the	r are	eas					
of spe										
					9					
Listening: Li	stening to technical talks with comprehension tasks - Speaking - conv	ersa	ation							
methods in r	eal life occurrences using expressions of different emotions and imperative	usa	ages							
- Reading -	reading short technical texts from journals- newspapers- Writing-	purp	ose	С	01					
statements – extended definitions – writing instructions – checklists-recommendations-										
Vocabulary Development- technical vocabulary Language Development – tenses- subject verb										
agreement -	compound words.									
	READING AND STUDY SKILLS			-	9					
Listening-Lis	tening Comprehension of a discussion on a technical topic of common inte	eres	st by							
three or four	participants (real life as well as online videos)Speaking – describing a p	oroc	ess-							
Reading: Pra	actice in chunking and speed reading - Paragraphing- Writing- interpreting	g ch	arts,	С	02					
graphs- Vo	cabulary Development: Important foreign expressions in Use, hom	nony	/ms,							
homophones	, homographs- easily confused words Language Development- imp	pers	onal							
passive voice	e, numerical adjectives.									
					1					
	TECHNICAL WRITING AND GRAMMAR				9					
Listening – li	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects	s, str	ess,		9					
Listening – li intonation &	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading	s, str g lo	ess, nger		9					
Listening – li intonation & texts for deta	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading iled understanding. (GRE/IELTS practice tests); Writing-Describing a proce	s, str g lo ess,	ess, nger use	C	9					
Listening – li intonation & texts for deta of sequence	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading iled understanding. (GRE/IELTS practice tests); Writing-Describing a process words- Vocabulary Development- sequence words- Informal vocabulary	s, str g lo ess, ary	ess, nger use and	c	9					
Listening – li intonation & texts for deta of sequence formal subs	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading iled understanding. (GRE/IELTS practice tests); Writing-Describing a proce words- Vocabulary Development- sequence words- Informal vocabulation titutes-Misspelled words. Language Development- embedded sentence	s, str g lo ess, ary ces	ess, nger use and and	c	9					
Listening – li intonation & texts for deta of sequence formal subs Ellipsis.	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading iled understanding. (GRE/IELTS practice tests); Writing-Describing a proce words- Vocabulary Development- sequence words- Informal vocabula titutes-Misspelled words. Language Development- embedded sentence	s, str g lo ess, ary ces	ess, nger use and and	c	9					
Listening – li intonation & texts for deta of sequence formal subs Ellipsis.	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading iled understanding. (GRE/IELTS practice tests); Writing-Describing a proce words- Vocabulary Development- sequence words- Misspelled Words. Language Development- embedded REPORT WRITING	s, str g lo ess, ary ces	ess, nger use and and	c	9					
UNIT III Listening – li intonation & texts for deta of sequence formal subs Ellipsis. UNIT IV Listening –	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading iled understanding. (GRE/IELTS practice tests); Writing-Describing a proce words- Vocabulary Development- sequence words- Informal vocabulation titutes-Misspelled words. Language Development- embedded sentence REPORT WRITING Model debates & documentaries and making notes. Speaking – exp	, str g lo ess, ary ces pres	ess, nger use and and	c	9 03 9					
Listening – li intonation & texts for deta of sequence formal subs Ellipsis. UNIT IV Listening – agreement/d	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading iled understanding. (GRE/IELTS practice tests); Writing-Describing a proce words- Vocabulary Development- sequence words- Informal vocabulat titutes-Misspelled words. Language Development- embedded sentence REPORT WRITING Model debates & documentaries and making notes. Speaking – expressing opinions-Reading: Technical	s, str g lo ess, ary ces pres rep	ess, nger and and sing orts,	c	9 03 9					
UNIT III Listening – Ii intonation & texts for deta of sequence formal subs Ellipsis. UNIT IV Listening – agreement/d advertisemen	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading iled understanding. (GRE/IELTS practice tests); Writing-Describing a proce words- Vocabulary Development- sequence words- Informal vocabulatitutes-Misspelled words. Language Development- embedded sentence REPORT WRITING Model debates & documentaries and making notes. Speaking – expressing opinions-Reading: Technical nts and minutes of meeting - Writing- email etiquette- job application – cov	g lo ess, ary ces pres rep	ess, nger use and and sing orts, etter	c	9 03 9					
Listening – li intonation & texts for deta of sequence formal subs Ellipsis. UNIT IV Listening – agreement/d advertisemen –Résumé pro	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading iled understanding. (GRE/IELTS practice tests); Writing-Describing a proce words- Vocabulary Development- sequence words- Informal vocabulatitutes-Misspelled words. Language Development- embedded sentence REPORT WRITING Model debates & documentaries and making notes. Speaking – expressing opinions-Reading: Technical nts and minutes of meeting - Writing- email etiquette- job application – cov eparation(via email and hard copy)- analytical essays and issue based e	g lo ess, ary ces rep ver l essa	ess, nger use and and sing orts, etter	c	9 03 9					
Listening – li intonation & texts for deta of sequence formal subs Ellipsis. UNIT IV Listening – agreement/d advertisemen –Résumé pro Vocabulary	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading illed understanding. (GRE/IELTS practice tests); Writing-Describing a processor words- Vocabulary Development- sequence words- Informal vocabulation words- Vocabulary Development- sequence words- Informal vocabulation ituttes-Misspelled words. Language Development- embedded sentence Model debates & documentaries and making notes. Speaking – explication isagreement, assertiveness in expressing opinions-Reading: Technical nts and minutes of meeting - Writing- email etiquette- job application – cov eparation(via email and hard copy)- analytical essays and issue based e Development- finding suitable synonyms-paraphrasing- Language Development-	g lo ess, ary ces rep ver l essa opm	ess, nger use and and sing orts, etter ays hent-	c	9 03 9					
Listening – li intonation & texts for deta of sequence formal subs Ellipsis. UNIT IV Listening – agreement/d advertisemen –Résumé pro Vocabulary I clauses- if co	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading iled understanding. (GRE/IELTS practice tests); Writing-Describing a proce words- Vocabulary Development- sequence words- Informal vocabulat titutes-Misspelled words. Language Development- embedded sentence REPORT WRITING Model debates & documentaries and making notes. Speaking – expressing opinions-Reading: Technical nts and minutes of meeting - Writing- email etiquette- job application – cov eparation(via email and hard copy)- analytical essays and issue based e Development- finding suitable synonyms-paraphrasing- Language Development-	g lo ess, ary ces rep ver l essa opm	ess, nger use and and sing orts, etter ays	C	9 03 9					
UNIT III Listening – li intonation & texts for deta of sequence formal subs Ellipsis. UNIT IV Listening – agreement/d advertisemen –Résumé pro Vocabulary I clauses- if co	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading iled understanding. (GRE/IELTS practice tests); Writing-Describing a proce words- Vocabulary Development- sequence words- Informal vocabulatitutes-Misspelled words. Language Development- embedded sentence REPORT WRITING Model debates & documentaries and making notes. Speaking – explication (via email and hard copy)- analytical essays and issue based experiment, finding suitable synonyms-paraphrasing- Language Development- finding suitable synonyms-paraphrasing- Language Developmentionals. GROUP DISCUSSION AND JOB APPLICATIONS	g lo ess, ary ces rep ver l essa opm	ess, nger use and and sing orts, etter ays	C	9 03 9 04					
UNIT II Listening – li intonation & texts for deta of sequence formal subs Ellipsis. UNIT IV Listening – agreement/d advertisemen –Résumé pro Vocabulary I clauses- if co UNIT V Listening: Es	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading iled understanding. (GRE/IELTS practice tests); Writing-Describing a process words- Vocabulary Development- sequence words- Informal vocabulatitutes-Misspelled words. Language Development- embedded sentence REPORT WRITING Model debates & documentaries and making notes. Speaking – explasagreement, assertiveness in expressing opinions-Reading: Technical notes and minutes of meeting - Writing- email etiquette- job application – covergaration(via email and hard copy)- analytical essays and issue based experiment- finding suitable synonyms-paraphrasing- Language Development. GROUP DISCUSSION AND JOB APPLICATIONS Ktensive Listening. (radio plays, rendering of poems, audio books and	g lo ess, ary ces rep ver l essa opm	ess, nger use and and sing orts, etter ays aent-	c	9 03 9 04 9					
UNIT III Listening – li intonation & texts for deta of sequence formal subs Ellipsis. UNIT IV Listening – agreement/d advertisemen –Résumé pro Vocabulary I clauses- if co UNIT V Listening: Ex Speaking –p	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading: iled understanding. (GRE/IELTS practice tests); Writing-Describing a proce words- Vocabulary Development- sequence words- Informal vocabulatitutes-Misspelled words. Language Development- embedded sentence REPORT WRITING Model debates & documentaries and making notes. Speaking – expressing opinions-Reading: Technical notes and minutes of meeting - Writing- email etiquette- job application – coverparation(via email and hard copy)- analytical essays and issue based experiment- finding suitable synonyms-paraphrasing- Language Development- finding suitable synonyms-paraphrasing- Language Developments. GROUP DISCUSSION AND JOB APPLICATIONS Ktensive Listening. (radio plays, rendering of poems, audio books and articipating in a group discussion - Reading: Extensive Reading (short	g lo ess, ary ces pres rep ver l essa opm oth sto	ess, nger use and and sing orts, etter ays nent- ners) ries,	c	9 03 9 04					
UNIT II Listening – li intonation & texts for deta of sequence formal subs Ellipsis. UNIT IV Listening – agreement/d advertisemen –Résumé pro Vocabulary I clauses- if co UNIT V Listening: Ex Speaking –p novels, poet	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading: ided understanding. (GRE/IELTS practice tests); Writing-Describing a proce words- Vocabulary Development- sequence words- Informal vocabulation vocabulations - Nocabulary Development- sequence words- Informal vocabulation REPORT WRITING Model debates & documentaries and making notes. Speaking – expressing opinions-Reading: Technical notes and minutes of meeting - Writing- email etiquette- job application – cover aparation (via email and hard copy)- analytical essays and issue based experiment- finding suitable synonyms-paraphrasing- Language Development- finding suitable synonyms-paraphrasing- Language Development- finding suitable synonyms-paraphrasing- Language Developmentionals. GROUP DISCUSSION AND JOB APPLICATIONS Ketensive Listening. (radio plays, rendering of poems, audio books and articipating in a group discussion - Reading: Extensive Reading (short ry and others)– Writing reports- minutes of a meeting- accident and	g lo ess, ary ces rep ver l essa opm oth sto	ess, nger use and and sing orts, etter ays hent- ners) ries, vey-	C C	9 03 9 04 9					
UNIT II Listening – li intonation & texts for deta of sequence formal subs Ellipsis. UNIT IV Listening – agreement/d advertisemen –Résumé pro Vocabulary I clauses- if co UNIT V Listening: Ex Speaking –p novels, poet Writing a let	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading: iled understanding. (GRE/IELTS practice tests); Writing-Describing a processor words- Vocabulary Development- sequence words- Informal vocabulatititutes-Misspelled words. Language Development- embedded sentence REPORT WRITING Model debates & documentaries and making notes. Speaking – explication (via email and hard copy)- analytical essays and issue based experiment- finding suitable synonyms-paraphrasing- Language Development- finding suitable synonyms-paraphrasing- Language Developmentionals. GROUP DISCUSSION AND JOB APPLICATIONS Ketensive Listening. (radio plays, rendering of poems, audio books and articipating in a group discussion - Reading: Extensive Reading (short ry and others)– Writing reports- minutes of a meeting- accident and ter/ sending an email to the Editor - cause and effect sentences -Voor	g lo ess, ary ces pres rep ver l essa opm oth sto sur cabu	ess, nger use and and sing orts, etter ays ient- iers) ries, vey- ulary	C C	9 03 9 04 9					
UNIT III Listening – li intonation & texts for deta of sequence formal subs Ellipsis. UNIT IV Listening – agreement/d advertisemen –Résumé pro Vocabulary I clauses- if co UNIT V Listening: Ex Speaking –p novels, poet Writing a let Developmen	TECHNICAL WRITING AND GRAMMAR stening to conversation – effective use of words and their sound aspects pronunciation - Speaking – mechanics of presentations -Reading: Reading: iled understanding. (GRE/IELTS practice tests); Writing-Describing a proce words- Vocabulary Development- sequence words- Informal vocabulatitutes-Misspelled words. Language Development- embedded sentence REPORT WRITING Model debates & documentaries and making notes. Speaking – explication + assertiveness in expressing opinions-Reading: Technical ints and minutes of meeting - Writing- email etiquette- job application – coverparation(via email and hard copy)- analytical essays and issue based experiment- finding suitable synonyms-paraphrasing- Language Development- finding suitable synonyms-paraphrasing- Language Development - finding suitable synonyms-paraphrasing- Language Development - go prove the Listening. (radio plays, rendering of poems, audio books and articipating in a group discussion - Reading: Extensive Reading (short ry and others)– Writing reports- minutes of a meeting- accident and ter/ sending an email to the Editor - cause and effect sentences -Voor t- verbal analogies. Language Development- reported speech.	g lo ess, ary ces rep ver l essa opm oth sto sur cabu	ess, nger use and and sing orts, etter ays nent- ners) ries, vey- ulary	c c	9 03 9 04 9					

TEXT E	BOOK	6													
1.	Board	of edi	tors. I	Fluen	cy in	Engli	sh A	Cours	se bo	ok for	Engine	eering	and Tec	hnology.	Orient
	Blacks	wan, H	lydera	abad:	2020										
2.	Barun	K Mitra	a, Effe	ective	Tech	nical (Comm	nunica	ation (Oxford	Unive	rsity Pi	ress : 20	06.	
3.	Sudha	rshana	a.N.P	and	Save	eetha.	. C.	Engli	sh fo	or Tec	hnical	Com	municati	on. Car	nbridge
	Univer	sity Pr	ess: N	lew D	elhi, 2	2016.									
REFER	ENCE	BOO	٨S												
1.	1. Raman, Meenakshi and Sharma, Sangeetha- Technical Communication Principles and														
	Practice. Oxford University Press: New Delhi,2014.														
2.	. Kumar, Suresh. E. Engineering English. Orient Blackswan: Hyderabad, 2015														
3.	3. Booth-L. Diana, Project Work, Oxford University Press, Oxford: 2014.														
4.	. Grussendorf, Marion, English for Presentations, Oxford University Press, Oxford: 2007														
5.	Means	s, L. T	homa	s and	d Elai	ne La	anglois	s, En	glish	& Con	nmunio	cation	For Coll	eges. C	engage
	Learning,USA: 2007.														
6.	6. Caroline Meyer & Bringi dev, Communicating for Results Oxford University Press: 2021.														
7. Aruna Koneru, Professional Speaking Skills, Oxford University Press :2015.															
COURSE OUTCOMES															
Upon completion of the course, students will be able to															
CO1	Speal	clear	ly, co	onfide	ntly, d	comp	rehen	sibly,	and	comm	unicate	e with	one or	many li	steners
COT	using	approp	oriate	comn	nunica	ative s	strateg	gies.							
<u> </u>	Write	cohes	ively	and	cohere	ently	and f	lawle	ssly a	avoidin	g grar	nmatic	al errors	s, using	a wide
002	vocab	ulary r	ange,	orga	nizing	their	ideas	logic	ally oi	n a top	ic.				
CO3	Read	differe	nt ger	nres o	of texts	s adop	oting	/ariou	is rea	ding st	rategie	es.			
CO4	Listen	/view a	and co	ompre	hend	differ	ent sp	oken	disco	ourses/	excerp	ots in d	ifferent a	iccents	
CO5	Identi	y topic	s and	l form	ulate	quest	ions f	or pro	ductiv	/e inqu	iry				
				Μ	APPI	NG O	F CO	s WI1	TH PC)s AN[PSO	S			
									(5.0.)				PROG	RAM SP	ECIFIC
COs				PRC	GRA		псо	MES ((POS)				OUTC	OMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	-	-	2	3	-	-	1	-	2
CO2	-	1	-	2	-	-	-	-	-	3	-	-	1	-	2
CO3	-	2	-	3	-	-	-	-	-	2	-	-	1	-	2
CO4	-	-	-	-	-	-	-	-	2	2	-	-	1	-	2
CO5	-	2	1	1	2	-	2	-	-	3	-	-	1	-	2

MA1202	ENGINEERING MATHEMATICS - II	L	Т	Ρ	С						
(Common f	or all branches of B.E. / B. Tech Programmes Except AI-DS & AI-ML)	4	0	0	4						
OBJECTIVES											
✤ This	course is designed to cover topics such as Differential Equation, V	ecto	or Ca	alcu	ılus,						
Com	plex Analysis and Laplace Transform.										
✤ The	various methods of complex analysis and Laplace transforms can be use	ed fo	or ef	ficie	ently						
solvii	ng the problems that occur in various branches of engineering disciplines										
UNIT I	ORDINARY DIFFERENTIAL EQUATIONS				12						
Higher order	linear differential equations with constant coefficients - Method of var	iatio	n of								
parameters- I	Homogenous equation of Euler's and Legendre's type – System of simul	ltane	eous	C	:01						
linear differential equations with constant coefficients											
UNIT II VECTOR CALCULUS											
Gradient and	directional derivative - Divergence and curl - Vector identities - Irrotation	onal	and	T							
Solenoidal ve	ctor fields – Line integral over a plane curve – Surface integral - Area of a	a cu	rved	6	<u>`</u>						
surface - Volu	me integral - Green's, Gauss divergence and Stoke's theorems – Verifica	tion	and		,02						
application in evaluating line, surface and volume integrals											
UNIT III	COMPLEX VARIABLES			╧	12						
Analytic functions - Necessary and sufficient conditions for analyticity in Cartesian and polar											
coordinates -	Properties – Harmonic conjugates – Construction of analytic function – Co	onfo	rmal	C	:03						
mapping – Ma	apping by functions $w = Z + C$, CZ, $1/Z$ - Bilinear transformation										
UNIT IV	COMPLEX INTEGRATION				12						
Cauchy's inte	gral theorem – Cauchy's integral formula – Taylor's and Laurent's s	serie	es –								
Singularities -	- Residues – Residue theorem – Application of residue theorem for evalu	Jatic	on of	6	<u>`04</u>						
real integrals	- Use of circular contour and semi circular contour(excluding poles on	the	real		,04						
line)											
UNIT V	LAPLACE TRANSFORMS				12						
Existence cor	nditions – Transforms of elementary functions –Basic properties – Trans	sfori	m of	T							
unit step func	tion and unit impulse function - Shifting theorems - transforms of derivati	ives	and								
integrals — I	nverse transforms - Convolution theorem - Transform of periodic fun	ctio	ns –	- C	:05						
Application to	solution of linear second order ordinary differential equations with	cons	stant	2 1							
coefficients											
TOTAL : 60 PER											
TEXT BOOKS	3										
 Grewal B.S., —Higher Engineering Mathematicsll, Khanna Publishers, New Delhi,43rd Edir 2014. 											

 Kreyszig Erwin, "Advanced Engineering Mathematics ", John Wiley and Sons, 10th Edition, New Delhi, 2016

REFERENCE BOOKS

1.	G Bali N., Goyal M. and Watkins C., —Advanced Engineering MathematicsII, Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009. Jain R.K. and Ivengar S.R.K., — Advanced Engineering Mathematics II, Narosa Publications														
2.	Jain R New D	.K. and)elhi, 3	d lyen rd Edi	gar S ition, 2	.R.K., 2007.	— Ac	dvanc	ed Er	nginee	ering M	athem	atics II	, Narosa	Publicat	ions,
3.	OʻNeil, Delhi,	, P.V 2007.	—Adv	anceo	l Engi	neerii	ng Ma	athem	aticsl	, Ceng	age Le	earning	g India P	vt., Ltd, N	lew
4.	Sastry Delhi,	, S.S, - 2014.	—Eng	jineeri	ing Ma	athem	natics	", Vol.	&	, PHI L	.earnin	g Pvt.	Ltd,4th E	Edition, N	lew
5.	T. Veerarajan. Engineering Mathematics – II, McGraw Hill Education; First edition 2017.														
COURSE OUTCOMES															
Upon o	Upon completion of the course,														
CO1	The students will be imbibed with techniques in solving ordinary differential equations that arises in most of the engineering problems														
CO2	The students will be acquainted with the concepts of vector calculus like Gradient, Divergence, Curl, Directional derivative, Irrotational vector and Solenoidal vector. The course gives an understanding of Vector integration, needed for problems in all engineering disciplines.														
CO3	The students will develop an understanding of the standard techniques of complex variable and mapping so as to enable the student to apply them with confidence, in application areas such as heat conduction, elasticity, fluid dynamics and flow of electric current.														
CO4	The expa	studen Insions	it will I s, Sing	be ex jular p	posec points,	l to th , Appl	e con icatio	n of re	of Ca esidue	uchy's e theor	integra em to o	al theo evalua	rem, Tay te compl	/lor and l ex integr	_aurent als.
CO5	Stud give	ents w easier	vill und ways	dersta to ha	ind th ndle t	e pur he pro	pose oblem	of us that	ing tra is beir	ansforr ng inve	ms to estigate	create ed.	new do	main wh	ich can
	• •			Μ	APPI	NG O	F CO	s WI	ГН РС)s AN[) PSO	s			
				PRC	GRA	MOU	тсо	MES	(POs))			PROG		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PS01		PSO3
C01	3	3	3	3	2	1	0	0	0	0	1	2	2	1 302	2
CO2	3	3	3	1	- 1	1	0	0	0	0	2	2 1	1	1	1
CO3	3	3	3	2	1	1	0	1	0	0	-	1	2	1	2
CO4	3	3	3	1	0	0	0	0	0	0	1	0	1	2	2
CO5	3	3	3	1	0	0	0	0	0	0	1	0	2	1	1

PH1252	PHYSICS FOR CIVIL ENGINEERING	L	Т	Ρ	С					
		3	0	0	3					
	duce the principles of thermal acquistics, optics and new materials for a	sivil	ongi	noor	ina					
applica	tions		engi	leel	ing					
					9					
Heat transfer t	prough fenestrations, thermal insulation and its benefits- beat gain and h	heat	ءءما	1	J					
estimation - fa	actors affecting the thermal performance of buildings thermal measur	rem	-nts							
thermal comfo	rt indices of thermal comfort climate and design of solar radiation	sha	dina							
devices-centra	I heating. Principles of natural ventilation- ventilation measurements, de	esia	n for	с	01					
natural ventila	tion-Window types and packaged air conditioners-chilled water plant	-fan	coil		•••					
systems-Water	piping -cooling load-Air conditioning systems for different types of b	uildi	nas-							
Protection aga	inst fire to be caused by A.C. Systems	anai	ngo							
				<u> </u>	9					
Classification	f sound-decidel- Weber-Fechner law-Sabine's formula- derivation using	aar	owth		5					
and decay met	thod_ Absorption Coefficient and its determination_factors affecting aco	y yr Lletiu		:						
buildings and t	hoir remedies. Methods of sound absorptions absorbing materials pairs	usin 2 2n	d ite	_	02					
	nell remedies. Methods of sound absorptions-absorbing materials-holse	t an			02					
heasurements, sound insulation and its measurements, impact of noise in multi-storeyed										
buildings.										
		<u> </u>			9					
Radiation quar	ntities-spectral quantities- photometry: cosines law, inverse square law.	VIS	ion–							
photobic, mes	ophic, scotopic visions - Vision Defects (near-sightedness, farsight	tean	iess,							
Presbyobia, a	stigmatism, higher order defects(aberrations)) - Colour-luminous e		ency	С	03					
function- Visu	al field glare, colour- day light calculations-daylight design of w	vind	ows,							
measurement	of day-light and use of models and artificial skies, principles of artificial	ligh	iting,							
supplementary	artificial lighting – lighting for different buildings.									
UNIT IV	NEW ENGINEERING MATERIALS				9					
Composites- d	lefinition and classification-Fibre reinforced plastics (FRP) and fibre re	info	rced							
metals(FRM)-N	Ietallic glasses-Shape memory alloys-Ceramics-Classification-Crystallin	ne-	Non							
Crystalline-Bor	nded ceramics, Manufacturing methods- Slip casting- Isostatic pressi	ng-	Gas	С	04					
pressure bond	ling- Properties- thermal, mechanical, electrical and chemical ceramic	c fik	ores-							
ferroelectric ar	d ferromagnetic ceramics- High Aluminium ceramics- Polymer nanocor	npo	sites							
in construction										
UNIT V	HAZARDS				9					
Seismology ar	nd Seismic waves-Earth quake ground motion-Basic concepts and es	stima	ation							
techniques- si	te effects- Cyclone and flood hazards-Fire hazards and fire protecti	on,	fire-							
proofing of ma	terials, fire safety regulations and firefighting equipment –Prevention an	id sa	afety	С	05					
measures -	Disaster Management: Fundamental concept of Disaster Mana	gen	nent,							
government, N	IGOs and peoples participation disaster management									
TOTAL : 45 PERI										

TEXT BOOKS

- 1. Alexander, D. "Natural disaster", Springer (1993).
- 2. Budinski, K.G. & Budinski, M.K. "Engineering Materials Properties and Selection", Prentice Hall, 2009.
- 3. Severns, W.H. & Fellows, J.R. "Air conditioning and Refrigeration", John Wiley and Sons, London, 1988.
- 4. Stevens, W.R., "Building Physics: Lighting: Seeing in the Artificial Environment, Pergaman Press, 2013.

REFERENCE BOOKS

- 1. Gaur R.K. and Gupta S.L., Engineering Physics. Dhanpat Rai publishers, 2012.
- 2. Reiter, L. "Earthquake hazard analysis Issues and insights", Columbia University Press, 1991.
- 3. Shearer, P.M. "Introduction to Seismology", Cambridge University Press, 1999.

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Knowledge on the thermal performance of buildings,
- CO2 Knowledge on the acoustic properties of buildings,
- CO3 Knowledge on various lighting designs for buildings,
- CO4 Knowledge on the properties and performance of engineering materials,
- CO5 Knowledge on the hazards of buildings and disaster management.

MAPPING OF COs WITH POs AND PSOs

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	3	3	3	3	3	2	3	3	3	3	3	1	-	2
CO2	3	3	3	3	2	3	2	3	2	2	3	2	1	-	2
CO3	3	3	3	3	3	2	2	3	3	3	2	3	1	-	2
CO4	3	2	2	2	2	2	3	2	2	3	3	3	1	-	2
CO5	2	2	3	3	2	3	2	3	3	3	3	3	1	-	2
GE1204	ENVIRONMENTAL SCIENCE AND ENGINEERING	L	Τ	Ρ	С										
--------------------	--	-------------------	----------------	-----	----------										
	(Common for all branches of B.E. / B. Tech Programmes)	3	0	0	3										
OBJECTIVES) A dha batan nalating albig la turang Katan ang ang tang ang bang tang tang tang tang tang tang tang t														
↔ To stu	by the inter relationship between living organism and environment.				سا ما ب										
	breciate the importance of environment by assessing its impact on the	e nu	man	wo	na,										
	and implement scientific technological economic and nolitic	പം	olutic	ne	to										
	and implement scientific, technological, economic and points	ai 5	olutic	115	10										
enviro ♦ To stu	dy the integrated themes and biodiversity natural resources pollution of	ontro	l and	wa	este										
• Te sta	iement	Jintio	i ana	wa	010										
✤ To stu	idv the dynamic processes and understand the features of the earl	th's i	interi	ora	and										
surfac	$\mathbf{\hat{s}}_{\mathbf{r}}$														
UNIT I	ENVIRONMENT, ECOSYSTEM AND BIODIVERSITY				9										
Definition, sc	ppe and importance of environment – Need for public awareness –	Rol	e of		<u> </u>										
Individual in E	nvironmental protection – Concept of an ecosystem – Structure and fu	Inctic	on of												
an ecosvstem	- Producers, consumers and decomposers - Energy flow in the eco	svste	em –												
Food chains	food webs and ecological pyramids – Ecological succession -	- Tv	pes.												
characteristic	features, structure and function of forest, grass land, desert and aquation	., c (po	nds.												
lakes rivers	oceans estuaries) ecosystem Biodiversity – Definition – Genetic spe	- cies	and												
ecosystem div	versity – Value of biodiversity – Consumptive use productive use socia	l eth	nical	С	01										
aesthetic and	ontion values - Biodiversity at global national and local levels - In	n, etn India 4	ae a												
	v nation Hot spots of biodiversity. Threats to biodiversity Hab														
	ild life human wildlife conflicte. Wildlife protection act and forcest con		uss,												
	and me, numan-wilding connicts – wilding protection act and forest con														
act -Endange	ared and endemic species - Conservation of biodiversity - In-situ and	ex-	-situ												
					0										
Definition C	ENVIRONMENTAL FOLLOTION	lutio	<u> (a)</u>	1	9										
Deminion - C	auses, effects and control measures of. (a) All pollution (b) water pol		1 (C)												
Soli poliution	a) Marine politition (e) Noise politition (f) Thermal politition (g) Nuclear r	lazar	us –												
Solid waste n	lanagement: causes, enects and control measures of municipal solid	wasi	əs –	С	02										
Problems of e	-waste – Role of an Individual in prevention of pollution – Pollution case	stual	es –												
Disaster man	agement – Floods, earthquake, cyclone, tsunami and landslides – Fleid	stuc	iy of												
local polluted	site – Urban / Rural / Industrial / Agricultural.														
					9										
Forest resou	rces: Use and over-exploitation – Deforestation – Case studies -	- Tin	nber												
extraction, mi	ning, dams and their effects on forests and tribal people – Water resource	;es –	Use												
and overutiliz	ation of surface and ground water, floods, drought, conflicts over water	– Da	ams:												
benefits and	problems – Mineral resources: Use and exploitation – Environmental e	effect	ts of												
extracting and	using mineral resources – Case studies – Food resources: World food	probl	ems												
– Changes ca	aused by agriculture and overgrazing – Effects of modern agriculture:	fertili	zer–	С	03										
pesticide prob	lems, water logging, salinity – Case studies – Energy resources: Growin	g en	ergy												
needs – Rene	ewable and non renewable energy sources – Use of alternate energy s	ourc	es –												
Case studies	- Land resources: Land as a resource - Land degradation, man	indu	lced												
landslides, so	il erosion and desertification - Role of an individual in conservation of	of na	tural												
resources – E	quitable use of resources for sustainable lifestyles – Field study of loca	al are	a to												
document env	ironmental assets – River / Forest / Grassland / Hill / Mountain.														

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT													9		
From uns conserva of people Environm	sustaii tion, r ; its p iental	nable ain w roble ethic	to su ater h ms an s – Is	staina arves d cor sues	able d sting, ncerns and	levelo water s, cas possil	pmen shed e stuc ble sc	nt – U mana dies – plution	rban geme Role s – C	problei ent – R of nor Climate	ms rela esettle n-gover chang	ated to ement a rnment ge – G	energy and reha al organ lobal wa	– Water bilitation ization – arming –	
Acid rain,	Ozor	ne lay	er dep	oletior	า –Nu	clear	accide	ents a	and ho	olocaus	st – Ca	se stu	dies – W	asteland	004
reclamati	on –	Cor	Isume	rism	and	wast	e pro	oducts	s —	Princip	les o	f Gree	en Cher	mistry –	C04
Environm	ent p	rotect	ion ad	ct – A	ir (Pre	eventi	on an	d Co	ntrol d	of Pollu	ition) A	Act – W	/ater (Pr	evention	
and contr	ol of	Pollut	ion) A	\ct - \	Wildlif	e pro	tectio	n Act	– Foi	rest co	nserva	ation ad	ct – Enfo	prcement	
machiner	y invo	olved	in en	vironr	menta	l legi	slatior	n– Ce	entral	and st	tate po	ollution	control	boards-	
National (Greer	Tribu	unal –	Publi	c awa	arenes	SS.								
UNIT V HUMAN POPULATION AND THE ENVIRONMENT Population growth – Variation among nations – Population explosion – Family welfare															9
Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies. TOTAL : 45 PER														CO5	
Total : 45 PEF															RIODS
	BOOKS Books (Environmental Science and Engineering) Tate McCrow Lill New														
(2	014).		pri, c	livii0		tion t		e an	u Eliç	Jilleeni	ng, i	ala M	Solono	nii, New	Dell'II,
2. G Pi	arso	n Edu	cation	, 1110) (200	100000 14)			VITOTI	nenta	i Engi	neenn	y anu	Science	e, znu	eallion,
3. D	r. A. S	Sheik	Mide	en an	d S.Iz	zzat F	athim	าa. "E	nviror	nmenta	al Scie	nce ar	nd Engin	eerina".	Airwalk
P	ublica	tions,	Chen	nai, (2018)			,					5	J ,	
REFERE	NCE	BOOI	٢S		,										
1. D	harme	endra	S. Se	ngar,	'Envi	ronme	ental I	aw', F	Prentio	ce hall	of Indi	a Pvt L	td, New	Delhi, (2	007).
2. Ei	rach	Bharu	ucha,	"Tex	tbook	of	Enviro	onmei	ntal S	Studies	", Un	iversitie	es Pres	s (I) P\	∕t, Ltd,
H	ydrab	ad, (2	015).												
3. G	. Tyl	er M	iller,S	cott	E. S	poolm	nan,	"Envii	ronme	ental S	Scienc	e", Ce	engage	Learning	g India
P	∕t.Ltd,	Delhi	, (201	4).				_						_ ,	
4. R.	. Raja	gopal	an, 'E	inviro	nmen	tal Stu	udies-	From	Crisis	s to Cu	re', O>	ford U	niversity	Press, (2	2005).
5. Ai	hubha	i Kai	JShik	, C.	Р. К	aushi	K, "⊢	erspe	ectives	s in I	Enviro	nmenta	al Studi	es", Nev	w Age
	ternat	lional	PVI. L	.ta, ine "Llo	edhoo	eini, (∠ Skof ⊑	2004). - Duire	nmon		ainear	ina" (ם סםי		15)	
		COM	ES.	, ⊓ai				nmen	iai Ei	igineer	ing , c		ess, (20	15).	
	mnlet	ion o	ES f the	cours	se sti	udent	s will	l he a	hle to	`					
CO1 Ob	tain k	nowle	dae a	bout	envirc	nmer	nt ecc	osvste	ms a	, nd bioc	liversit	v			
CO2 Tal	ke me	asure	es to c	ontro	envir	onme	ental c	olluti	on.			.y.			
CO3 Ga	in kno	wled	ne abo	out na	tural	resou	rces a	and e	nerav	source	es.				
CO4 Fin	d and	l impl	emen	t scie	ntific.	techr	noloai	cal. e	conor	nic an	d polit	ical so	lutions to	o enviror	mental
pro	blems	S. ')		- 5	, -							
CO5 Un	dersta	and th	e imp	act of	envir	onme	nt on	huma	an pop	oulation	า.				
				М	APPI	NG O	F CO	s WI	TH PC)s AN[D PSO	S			
COs				PR	OGR/		UTCO	MES	(POs	;)			PROGI OUTC	RAM SPI OMES (I	ECIFIC PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	3	3	3	3	3	2	2	2	3	3	1	1
CO2	3	2	3	3	2	3	3	3	3	2	2	3	2	1	3
CO3	3	3	2	2	3	3	2	2	1	2	1	3	1	2	1
CO4	3	3	3	3	1	2	3	3	2	2	2	2	2	3	3
CO5	3	2	3	2	3	3	3	2	2	2	2	3	1	2	1

BE1253	BASIC ELECTRICAL AND ELECTRONICS ENGINEERING	L	Т	Ρ	С						
		3	0	0	3						
OBJECTIVES	ain the basic laws used in Electrical circuits and the different componen	uts a	nd fi	unct	tion						
of elect	rical machines.										
 To expl 	ain the fundamentals of semiconductor and applications.										
 To expl 	ain the principles of digital electronics.										
 To impa 	art knowledge of communication.										
UNIT I	ELECTRICAL CIRCUITS & MEASURMENTS				9						
Fundamental la	aws of electric circuits– Steady State Solution of DC Circuits – Introductic	on to	AC		1						
Circuits –Sinus	oidal steady state analysis- Power and Power factor - Single Phase an	d Tł	٦ree								
Phase Balanced Circuits. Classification of instruments – Operating Principles of indicating											
Instruments.											
UNIT II	ELECTRICAL MACHINES			<u> </u>	9						
Construction, F	Principle of Operation, Basic Equations and Applications of DC Generat	ors,	DC		L						
Motors, Single	Phase Transformer, single phase induction Motor.			С	02						
UNIT III	SEMICONDUCTOR DEVICES AND APPLICATIONS			<u> </u>	9						
Introduction - C	L Characteristics of PN Junction Diode – Zener Effect – Zener Diode and its	;									
Characteristics	- Half wave and Full wave Rectifiers - Voltage Regulation-Bipolar	Junc	tion	С	O 3						
Transistor – Cl	3, CE, CC Configurations and Characteristics.										
UNIT IV	DIGITAL ELECTRONICS			<u>I</u>	9						
Binary Numbe	er System – Boolean Algebra theorems– Logic Gates, Digital cir	rcuit	s –		1						
Combinational	circuits- Half adder, Full Adder, Half Subtractor, Full Subtractor, Mul	tiple	xer/	С	04						
Demultiplexer,	Introduction to sequential Circuits– Flip-Flops – Registers and Counters.										
UNIT V	FUNDAMENTALS OF COMMUNICATION ENGINEERING			<u> </u>	9						
Introduction –	Elements of Communication Systems– Need for Modulation, Princ	iple	s of		<u> </u>						
Amplitude and Frequency Modulations- Communication Systems: TV, Microwave, Satellite and											
Optical Fibre (B	Block Diagram Approach only).										
	TOTAL	: 45	i PEI		DS						
TEXT BOOKS											
1. Mittle N	l., "Basic Electrical Engineering", Tata McGraw Hill Edition, New Delhi, 19	990.									

2. Sedha R.S., "Applied Electronics", S. Chand & Co., 2006.

REFE	REFERENCE BOOKS															
1.	Mut	thus	ubran	naniar	ו R, S	alivał	nanan	S an	d Mu	aleed	lharan	K A, "E	Basic E	Electrical	, Electroi	nics
	and	l Cor	npute	er Eng	jineer	ing", 1	Γata №	/lcGra	w Hil	l, Sec	ond Ec	dition, 2	2006.			
2.	Nag	gsarl	kar T	K and	l Sukł	nija M	S, "B	asics	of Ele	ectrica	al Engi	neering	g", Oxf	ord pres	s 2005.	
3.	Meh	nta ∖	/ K, "F	Princi	oles o	f Elec	tronic	s", S.	Chan	d & C	ompar	ny Ltd,	1994.			
4.	Mah	nmo	od Na	ahvi a	nd Jo	seph	A. Ed	minist	ter, "E	lectric	c Circu	its", So	chaum	' Outline	Series,	
	McC	McGraw Hill, 2002. Bromkumar N. "Ropia Electrical Engineering". Anuradha Dubliahara, 2000.														
5.	Premkumar N, "Basic Electrical Engineering", Anuradha Publishers, 2003.															
COUR	RE OUTCOMES															
Upon	completion of the course, students will be able to															
CO1	Ability to understand the basic laws used in Electrical circuits and principle of measuring															
	Instruments.															
CO2	Ability to identify the electrical components explain the characteristics of electrical machines.															
CO3	Abili	ity to	o iden	tify se	emico	nduct	or dev	vices	and it	s app	licatior	IS.				
CO4	Und	lerst	and t	he de	sign p	princip	les of	ⁱ digita	al elec	ctronic	cs circu	uits.				
CO5	Able	e to	impa	rt the	know	ledge	of va	rious	comm	nunica	ation sy	/stems	-			
					Μ	APPI	NG O	F CO	s WI7	TH PC)s AN[) PSO	S			
									MES	(P Oa				PROG	RAM SP	ECIFIC
COs	5				FN	JGRF				(FU3)			OUTC	OMES (I	PSOs)
	P	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	3	1	1	1	1	1	1	1	1	1	1	3	2	2
CO2		3	3	1	1	1	1	1	1	1	1	1	2	3	2	2
CO3		3	3	3	1	3	3	2	1	2	2	3	3	3	2	2
CO4		3	3	3	2	1	2	2	2	2	2	3	3	3	2	2
CO5		3	3	2	1	2	1	1	1	1	2	2	3	3	2	2

GE1206	ENGINEERING MECHANICS L T	PC								
	(Common to Civil and Mechanical Engineering) 3 1	04								
◆ To deve	elop capacity to predict the effect of force.									
To develop	elop motion in the course of carrying out the design functions of Engineering.									
UNIT I	STATICS OF PARTICLES	9+3								
Introduction -	Units and Dimensions – Laws of Mechanics – Lami's theorem, Parallelogram									
and triangular	Law of forces – Vectorial representation of forces – Vector operations of forces -									
additions, sub	otraction, dot product, cross product – Coplanar Forces – rectangular	CO1								
components -	Equilibrium of a particle - Forces in space - Equilibrium of a particle in space -									
Equivalent systems of forces – Principle of transmissibility.										
UNIT II	EQUILIBRIUM OF RIGID BODIES	9+3								
Free body dia	gram – Types of supports –Action and reaction forces – stable equilibrium –									
Moments and	Couples - Moment of a force about a point and about an axis - Vectorial									
representation	of moments and couples - Scalar components of a moment - Varignon's	CO2								
theorem – Sing	gle equivalent force -Equilibrium of Rigid bodies in two dimensions – Equilibrium									
of Rigid bodies	in three dimensions.									
UNIT III	PROPERTIES OF SURFACES AND SOLIDS	9+3								
Centroids and	centre of mass – Centroids of lines and areas - Rectangular, circular, triangular									
areas by integ	ration – T section, I section, - Angle section, Hollow section by using standard									
formula – The	orems of Pappus - Area moments of inertia of plane areas - Rectangular,									
circular, triangu	ular areas by integration – T section, I section, Angle section, Hollow section by	CO 2								
using standard	formula – Parallel axis theorem and perpendicular axis theorem – Principal	003								
moments of in	ertia of plane areas - Principal axes of inertia-Mass moment of inertia -mass									
moment of ine	rtia for prismatic, cylindrical and spherical solids from first principle – Relation to									
area moments	of inertia.									
UNIT IV	DYNAMICS OF PARTICLES	9+3								
Displacements	, Velocity and acceleration, their relationship – Relative motion – Curvilinear									
motion - Newto	on's laws of motion – Work Energy Equation– Impulse and Momentum – Impact	CO4								
of elastic bodie	es.									
UNIT V	FRICTION AND RIGID BODY DYNAMICS	9+3								
Friction force -	- Laws of sliding friction – equilibrium analysis of simple systems with sliding									
friction - wed	ge friction Rolling resistance -Translation and Rotation of Rigid Bodies –	CO5								
Velocity and a	cceleration - General Plane motion of simple rigid bodies such as cylinder,	005								
disc/wheel and	sphere									
	TOTAL : 45 + 15 PE	RIODS								
TEXT BOOKS										
4 Deen 5	Dend Jahreten In E.D. Wester Mashering for Engineers (In Cl. Unite). Oto	da a la al								

- 1. Beer, F.P and Johnston Jr. E.R., "Vector Mechanics for Engineers (In SI Units): Statics and Dynamics", 8th Edition, Tata McGraw-Hill Publishing company, New Delhi(2004).
- 2. Vela Murali, "Engineering Mechanics", Oxford University Press(2010).

1.	Bhavikatti, S.S and Rajashekarappa, K.G., "Engineering Mechanics", New Age International (P)
	Limited Publishers,1998.

- 2. Hibbeller, R.C and Ashok Gupta, "Engineering Mechanics: Statics and Dynamics", 11th Edition, Pearson Education2010.
- 3. Irving H. Shames and Krishna Mohana Rao. G., "Engineering Mechanics Statics and Dynamics", 4th Edition, Pearson Education2006.
- Meriam J.L. and Kraige L.G., "Engineering Mechanics- Statics Volume 1, Dynamics- Volume 2", Third Edition, John Wiley &Sons, 1993.
- Rajasekaran S and Sankarasubramanian G., "Engineering Mechanics Statics and Dynamics", 3rd Edition, Vikas Publishing House Pvt. Ltd., 2005.

COURSE OUTCOMES Upon completion of the course, students will be able to CO1 illustrate the vectorial and scalar representation of forces and moments CO2 analyse the rigid body in equilibrium CO3 evaluate the properties of surfaces and solids CO4 calculate dynamic forces exerted in rigid body CO5 determine the friction and the effects by the laws of friction MAPPING OF COs WITH POs AND PSOs **PROGRAM SPECIFIC PROGRAM OUTCOMES (POs) OUTCOMES (PSOs)** COs PO6 PO10 P01 PO2 PO3 PO4 PO5 PO7 **PO8** PO9 PO11 PO12 PSO1 PSO2 PSO3 CO1 3 3 1 -1 2 1 -2 3 2 2 3 2 _ 3 2 -2 CO2 3 1 2 1 -2 3 2 3 2 -CO3 3 3 1 -1 2 1 -2 3 2 2 3 2 CO4 3 3 1 1 2 1 2 3 2 2 3 2 ---CO5 3 3 1 -1 2 1 -2 3 2 2 3 2 -

GE 1207ENGINEERING PRACTICES LABORATORYLPT									
		(Common for all branches of B.E. / B. Tech Programmes)	0	0	4	2			
OB	JECTIVES								
	To pro	vide exposure to the students with hands on experience on various ba	ISIC	engir	neei	ring			
	practic	es in Civil, Mechanical, Electrical and Electronics Engineering							
LIS	T OF EXP	ERIMENTS							
		GROUP A (CIVIL & MECHANICAL)							
Ι	CIVIL EN	GINEERING PRACTICE	13	}					
	Buildings	:							
	(a)	Study of plumbing and carpentry components of residential and	indu	strial					
		buildings. Safety aspects.							
	Plumbing) Works:							
	(a)	Study of pipeline joints, its location and functions: valves, taps, ca	oupli	ings,					
		unions, reducers, elbows in household fittings.							
	(b) Study of	of pipe connections requirements for pumps and turbines.							
	(c) Prepar	ation of plumbing line sketches for water supply and sewage works.			С	:01			
	(d) Hands	-on-exercise:							
	Bas	sic pipe connections – Mixed pipe material connection – Pipe connect	ions	with					
		different joining components.							
	(e) Demon	stration of plumbing requirements of high-rise buildings.							
	Carpentry	y using Power Tools only:							
	(a) Study of	of the joints in roofs, doors, windows and furniture.							
	(b) Hands-	on-exercise:							
	Wood	work, joints by sawing, planing and cutting.							
Ш	MECHAN	ICAL ENGINEERING PRACTICE	18	3					
	Welding:								
	(a) Prepar	ation of butt joints, lap joints and T- joints by Shielded metal arc welding.							
	(b)Gas we	elding practice							
	Basic Ma	chining:							
	(a) Simple	Turning and Taper turning							
	(b) Drilling	Practice							
	Sheet Me	tal Work:							
	(a) Formin	g & Bending:							
	(b) Model	making – Trays and funnels.			c	:02			
	(c) Differe	nt type of joints.				-			
	Machine	assembly practice:							
	(a) Study o	of centrifugal pump							
	(b) Study of	of air conditioner							
	Demonst	ration on:							
	(a)	Smithy operations, upsetting, swaging, setting down and	ben	ding.					
		Example – Exercise – Production of hexagonal headed bolt.		•					
	(b) Foundr	y operations like mould preparation for gear and step cone pulley.							
	(c)	Fitting – Exercises – Preparation of square fitting and V – fitting models.							
L	. ,				1				

		GROUP B (ELECTRICAL & ELECTRONICS)		
III	EL	ECTRICAL ENGINEERING PRACTICE 13		
	1.	Residential house wiring using switches, fuse, indicator, lamp and energy me	eter.	
	2.	Fluorescent lamp wiring.		CO2
	3.	Stair case wiring		COS
	4.	Measurement of electrical quantities - voltage, current, power & power fact	tor in	
		RLC circuit.		
	5.	Measurement of energy using single phase energy meter.		<u> </u>
	6.	Measurement of resistance to earth of an electrical equipment.		004
IV	ELE	CTRONICS ENGINEERING PRACTICE 16		
	1.	Study of electronic components and equipment's - Resistor, colour co	ding	
		measurement of AC signal parameter (peak-peak, rms period, freque	ncy)	
		using CR.		C 0 5
	2.	Study of logic gates AND, OR, EX-OR and NOT.		CO5
	3.	Generation of Clock Signal.		
	4.	Soldering practice – Components Devices and Circuits – Using general purp	oose	
		PCB. Measurement of ripple factor of HWR and FWR.		
		TOTAL: 60	0 PER	IODS
LIS	TOF	EQUIPMENT FOR A BATCH OF 30 STUDENTS		
S.I	No.	Description of Equipment	Qua	antity
S.I	No.	Description of Equipment CIVIL	Qua req	antity uired
S.I	No.	Description of Equipment CIVIL Assorted components for plumbing consisting of metallic pipes, plastic pipes,	Qua req	antity uired
S.I	No. 1.	Description of Equipment CIVIL Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings.	Qua req 15 s	antity uired sets
S.I	No. 1. 2.	Description of Equipment CIVIL Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. Carpentry vice (fitted to work bench)	Qua req 15 :	antity uired sets Nos
S.I	No. 1. 2. 3.	Description of Equipment CIVIL Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. Carpentry vice (fitted to work bench) Standard woodworking tools 15 Sets.	Qua req 15 : 15 :	antity uired sets Nos Sets.
S.I	No. 1. 2. 3. 4.	Description of Equipment CIVIL Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. Carpentry vice (fitted to work bench) Standard woodworking tools 15 Sets. Models of industrial trusses, door joints, furniture joints	Qua req 15 : 15 : 15 : 5 e	antity uired sets Nos Sets.
S.I	No. 1. 2. 3. 4.	Description of Equipment CIVIL Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. Carpentry vice (fitted to work bench) Standard woodworking tools 15 Sets. Models of industrial trusses, door joints, furniture joints Power Tools:	Qua req 15 : 15 : 5 e	antity uired sets Nos Sets. each
S.I	No. 1. 2. 3. 4.	Description of EquipmentCIVILAssorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings.Carpentry vice (fitted to work bench)Standard woodworking tools 15 Sets.Models of industrial trusses, door joints, furniture jointsPower Tools: (a) Rotary Hammer	Qua req 15 : 15 : 5 e	antity uired sets Nos Sets. each
S.I	No. 1. 2. 3. 4.	Description of EquipmentCIVILAssorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings.Carpentry vice (fitted to work bench)Standard woodworking tools 15 Sets.Models of industrial trusses, door joints, furniture jointsPower Tools:(a) Rotary Hammer(b) Demolition Hammer	Qua req 15 : 15 : 5 e	antity uired sets Nos Sets. each
S.I	No. 1. 2. 3. 4. 5.	Description of EquipmentCIVILAssorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings.Carpentry vice (fitted to work bench)Standard woodworking tools 15 Sets.Models of industrial trusses, door joints, furniture jointsPower Tools:(a) Rotary Hammer(b) Demolition Hammer(c) Circular Saw	Qua req 15 : 15 : 5 e 2 N	antity uired sets Nos Sets. each
S.I	No. 1. 2. 3. 4. 5.	Description of Equipment CIVIL Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. Carpentry vice (fitted to work bench) Standard woodworking tools 15 Sets. Models of industrial trusses, door joints, furniture joints Power Tools: (a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer	Qua req 15 : 15 : 5 e 2 N	antity uired sets Nos Sets. each
S.I	No. 1. 2. 3. 4. 5.	Description of Equipment CIVIL Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. Carpentry vice (fitted to work bench) Standard woodworking tools 15 Sets. Models of industrial trusses, door joints, furniture joints Power Tools: (a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer (e) Hand Drilling Machine	Qua req 15 : 15 : 5 e 2 N	antity uired sets Nos Sets. each
S.I	No. 1. 2. 3. 4. 5.	Description of EquipmentCIVILAssorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings.Carpentry vice (fitted to work bench)Standard woodworking tools 15 Sets.Models of industrial trusses, door joints, furniture jointsPower Tools:(a) Rotary Hammer(b) Demolition Hammer(c) Circular Saw(d) Planer(e) Hand Drilling Machine(f) Jigsaw	Qua req 15 : 15 : 5 e 2 N	antity uired sets Nos Sets. ach
S.I	No. 1. 2. 3. 4. 5.	Description of Equipment CIVIL Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. Carpentry vice (fitted to work bench) Standard woodworking tools 15 Sets. Models of industrial trusses, door joints, furniture joints Power Tools: (a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer (e) Hand Drilling Machine (f) Jigsaw	Qua req 15 : 15 : 5 e 2 N	antity uired sets Nos Sets. ach
S.I	No. 1. 2. 3. 4. 5. 1.	Description of Equipment CIVIL Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. Carpentry vice (fitted to work bench) Standard woodworking tools 15 Sets. Models of industrial trusses, door joints, furniture joints Power Tools: (a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer (e) Hand Drilling Machine (f) Jigsaw MECHANICAL	Qua req 15 : 15 : 5 e 2 N	antity uired sets Nos Sets. ach Nos
	No. 1. 2. 3. 4. 5. 1. 2.	Description of Equipment CIVIL Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. Carpentry vice (fitted to work bench) Standard woodworking tools 15 Sets. Models of industrial trusses, door joints, furniture joints Power Tools: (a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer (e) Hand Drilling Machine (f) Jigsaw MECHANICAL Arc welding transformer with cables and holders. Welding booth with exhaust facility.	Qua req 15 : 15 : 5 e 2 M 5 M	antity uired sets Nos Sets. each Nos Nos
	No. 1. 2. 3. 4. 5. 1. 2. 3. 3.	Description of Equipment CIVIL Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. Carpentry vice (fitted to work bench) Standard woodworking tools 15 Sets. Models of industrial trusses, door joints, furniture joints Power Tools: (a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer (e) Hand Drilling Machine (f) Jigsaw MECHANICAL Arc welding transformer with cables and holders. Welding booth with exhaust facility. Welding accessories like welding shield, chipping hammer, wire brush, etc.	Qua req 15 : 15 : 5 e 2 N 5 N 5 S	antity uired sets Nos Sets. ach Nos Nos Nos

5.	Cer	ntre lat	he.											2	2 Nos		
6.	Hea	arth fui	rnace	, anvil	and s	smithy	y tools	6.						2	Sets		
7.	Mo	ulding	table,	found	dry too	ols.								2	Sets		
8.	Pov	ver To	ol: An	gle G	rinder									2	2 Nos		
9.	Stu	dy-pu	rpose	e item	ns: ce	ntrifu	gal pu	mp, a	ir-cor	nditione	er.			1	each		
							ELE	ECTR	ICAL					•			
1.	Ass	orted	electr	ical co	ompor	nents	for ho	ouse v	viring.					1	5 Sets		
2.	Ele	ctrical	meas	uring	instru	ment	s.							1	0 Sets		
3.	Stu	dy pu	rpose	e item	s: Iro	n box	, fan a	and re	egulat	or, em	ergeno	y lamp).	1	each		
4.	Me	gger (2	250V/	500V)											1 No.		
	Pov	ver To	ools:														
5.	. (a)	(a) Range Finder(b) Digital Live-wire detector															
	(b)	(b) Digital Live-wire detector ELECTRONICS															
		ELECTRONICS Soldering guns 10 Nos.															
1.	. Sole	Soldering guns 10 Nos.															
2.	Ass	50 Nos															
3.	3. Small PCBs.														0 Nos.		
4. Multimeters														10	0 Nos.		
5. Study purpose items: Telephone, FM radio, low-voltage power supply														1	each		
COUR	SE OU	гсом	ES														
Upon	comple	tion o	of the	cours	se, st	uden	ts wil	be a	ble to)							
CO1	Fabrica	ate ca	rpentr	y con	npone	nts a	nd pip	e cor	nnecti	ons ind	cluding	j plumi	oing wor	ks. Use	welding		
	equipm	nent's	to joir	the s	structu	ires.								-			
CO2	Carry o	out the	basio	c mac	hining	oper	ations	s Mak	e the	model	s using	sheet	metal w	orks			
CO3	Carry o	out bas	sic ho	me el	ectrica	al woi	rks an	d app	liance	es.							
CO4	Measu	re the	electr	rical q	uantit	ies											
CO5	Elabora	ate on	the c	ompo	nents	, gate	s, sol	dering	g prac	tices							
				Μ	APPI	NG C	F CO	s WI	rh pc)s ANI	D PSO	S					
				PRC	GRA	ΜΟ	лтсо	MES	(POs))			PROG	RAM SP	ECIFIC		
COs									. ,				OUTC	OMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3		
CO1	3 1 3 3 3 1													-	-		
CO2	3 2 3 3 3 1 -													-	-		
C03	3	1	2	-	-	2	-	-	-	-	-	3	1	-	-		
C05	3	2	3 2	-	-	3 2	-	-	-	-	-	3	1	-	-		
CO2 CO3 C04	3 3 3	2 1 1	3 2 3	-		3 2 3	-	-			-	3 3 3	1 1 1		-		
	3	2	2		-	2	l -	-	-	-	_	3	I	-			

CE120)8				COM	PUTE	R Al	DED I	DRAF	TING	LABC	ORATO	DRY		L	Т	Ρ	С
															0	0	4	2
OBJE	СТІУ	ΈS																
*	То	und	erstar	nd the	e regu	ulatior	ns as	per	Natio	nal Bi	uilding	Code	and t	o identif	y the	e fur	nctio	nal
	requ	uirer	nents	of bu	ilding	s.												
*	То	mak	e the	e stuc	lents	learn	the	variou	ıs ele	ment	s of R	esider	ntial /	Institutio	nal /	/ Wc	rksł	ιор
	build	ding	s															
*	To i	mpa	irt fun	dame	ental k	nowle	edge (on Au	toCA	D soft	ware.							
*	To e	b enable the student to develop the drafting skills in drawing plan, section and elevations types of building Code														ation	ı of	
	vario	arious types of buildings using AutoCAD software as per National Building Code.																
LIST	OF EX															_		
1.	Introduction to building Components and Their Functions																	
2.	Intro	ntroduction to CAD (Computer Aided Drafting) software, General commands and their																
	prac	actices.														С	01	
3.	Elev	vation and cross section of Partly Panelled and Glazed Window																
4.	Elev	evation and cross section of Framed and Panelled Double Leaf Door																
5.	Plar	an and Sectional Elevation of Dog legged staircase																
6.	Plar	n, Se	ection	and	Eleva 	tion o	f Build	ding w	vith Lo	bad Be	earing	Wall						~~
7.	Plar	n, Se	ection	and	Eleva	tion -/	A Sing	gle Be	d Ro	om Ho	ouse w	ith R.C	C.C Ro	of			C	02
8.	Plar	n, Se	ection	and	Eleva 	tion –	Stori	ed res	sident	ial bui	ilding v	vith Do	g legg	ed stairc	ase		_	
9.	Plar	1, Se	ection	and	Eleva	tion o	f Fran	ned o			g							
10	. Plar	1, Se	ection	and	Eleva	tion o	t an I	ndust	rial b	ulding)			TOTAL	-			<u> </u>
														IOTAL	.:6) PE	RIO	DS
COUR	SE C	DUT	СОМ	ES														
Upon	com	plet	ion o	f the	cours	se, sti	udent	ts will	l be a	ble to								
CO1	To [Deve	elop c	Iraftin	g skill	s in d	rawin	g buil	ding c	ompo	onents	like Do	oors, w	indows a	and s	stairc	ase	
	usin	ig Ai	utoC/	AD so	ftware)												
CO2	ToE	Deve	elop c	Iraftin	g skill	s in d	rawin	g plar	n, sec	tion a	nd elev	/ation (of vario	ous types	s of t	buildi	ngs	
	usin	ig Ai	utoCA	AD so	tware)												
					Μ	APPI	NG O	F CO	s WI	TH PC)s ANI	D PSO	S					
					PR			итсо	MES	(POs	3			PROG	RAN	I SPI	ECIF	-IC
COs	5	OUTCOMES (PSO													s)			
	F	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PS	02	PS	03
CO1		3	-	-	3	3	3	-	-	2	1	-	3	3	3	3	2	2
CO2		3	-	-	3	3	3	-	-	2	1	-	3	3	3	3	2	2

MA1301	TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS	L	Τ	Ρ	С
	(Common to CIVIL, EEE, EIE, MECH and BIO)	4	0	0	4
OBJECTIVES					
✤ To intro	oduce the basic concepts of Partial differential equation and to find its solu	utio	ns.		
✤ To intro	oduce Fourier series analysis which is vital to many applications in en	igin	eering	g a	part
from its	use in solving boundary value problems.				
 To acqu 	aint the student with Fourier series techniques to solve heat and wave fl	ow	probl	em	s in
enginee	ring.				
✤ To fam	iliarize the student with Fourier transform techniques used in solving v	ario	us pi	act	ical
enginee	ring problems.				
✤ To intre	oduce the effective mathematical tools for the solutions of difference	eq	uatio	ns	that
model s	everal physical processes and to develop transform techniques for discret	e tii	ne sy	ste	ms.
UNIT I	PARTIAL DIFFERENTIAL EQUATIONS				12
Formation of p	artial differential equations - Singular integrals - Solutions of standard	type	es of		
first order part	ial differential equations (except $f(x^m z^k p, y^n z^k q) = 0)$ – Lagrange	's li	near		
equation – Lir	near partial differential equations of second and higher order with	con	stant	C	:01
coefficients of b	both homogeneous and non-homogeneous types				
					12
Dirichlet's con	ditions -Necessary and sufficient condition for existence of Fourier	seri	es –		12
General Fourie	er series – Odd and even functions – Half range sine series –Half range	e cc	osine	6	:02
series – Compl	ex form of Fourier series – Parseval's identity – Harmonic analysis.				<i>,</i> 02
	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS				12
Classification of	of PDE – Method of separation of variables – Fourier Series Solutions	of	one-		
dimensional w	ave equation – One dimensional equation of heat conduction – Stea	dy :	state	0	:03
solution of two	dimensional equation of heat conduction.				
	FOURIER TRANSFORMS				12
Statement of I	Fourier integral theorem – Fourier transform pair – Fourier sine and	Сс	sine		
transforms – P	roperties – Transforms of simple functions – Convolution theorem – Pa	arse	val's	C	:04
identity.					_
UNIT V	Z – TRANSFORMS AND DIFFERENCE EQUATIONS				12
Z-transforms -	- Elementary properties – Inverse Z-transform (using partial fract	ion	and		
residues) –Initi	al and final value theorems - Convolution theorem - Formation of di	ffer	ence	0	05
equations – So	lution of difference equations using Z – transform				
	TOTAL	.:6	0 PE	RIC	DS
·					
TEXT BOOKS					
1. Grew	al B.S., "Higher Engineering Mathematics", 44th Edition, Khanna P	ubli	shers	s, N	lew
Delhi	, 2017.				

- 2. Erwin Kreyszig, "Advanced Engineering Mathematics ", 10th Edition, John Wiley, India, 2016.
- 3. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 9th Edition, Laxmi Publications Pvt. Ltd, 2014.

1.	1. Dass, H.K., and Er.RajnishVerma, "Higher Engineering Mathematics", S.Chand Private														
	Ltd.,20	11.													
2.	Peter V	.O'Nei	I, "Ad	vance	ed Eng	gineer	ing M	lather	natics	s", 7th l	Edition	, Ceng	lage lear	ning,201	2
3.	James,	G., "	Advar	nced	Mode	rn Er	nginee	ering	Math	ematic	s", 3rc	l Editio	on, Pear	rson Edu	ucation,
	2012.														
4.	Raman	a. B.\	/., "H	igher	Engi	neerii	ng M	athen	natics	", Mc0	Graw I	Hill Ec	ducation	Pvt. Lto	d, New
	Delhi,2	016.													
5.	Wylie, F	R.C. an	ıd Bar	rett, L	C., "	Advar	nced l	Engin	eering	g Math	ematic	s "Tata	a McGrav	w Hill Ed	ucation
	Pvt. Ltd, 6th Edition, New Delhi, 2012														
COUR	RSE OUTCOMES														
Upon o	completion of the course, students will be able to														
CO1	Understand how to solve the partial differential equations and apply these concepts in the field														
COI	of engineering.														
CO^{2}	Learn Fourier series analysis which plays a vital role in the application of electrical engineering,														
002	vibration analysis, acoustics, optics, signal and image processing.														
	Appreciate the physical significance of Fourier series techniques in solving one and two-														
CO3	dimensional heat flow problems and one-dimensional wave equations and this concept is														
005	applied	d in the	e field	ls like	e elas	ticity,	heat	trans	fer, q	uantun	n mec	hanics	and als	o extens	ively in
	physica	al pher	nomei	non.											
	Unders	stand t	the m	athen	natica	l prin	ciples	s on t	ransfo	orms a	ind ga	in the	ability to	o formula	ate and
CO4	solve s	some c	of the	physi	cal pr	oblem	ns like	e des	igning	l electr	ical cir	cuits, s	signal pro	ocessing	, signal
	analys	is ,ima	ge pro	ocess	ing et	C.									
COS	Learn	to us	e the	effe	ctive	mathe	ematio	cal to	ols lil	ke Z-	transfo	orm fo	r the so	lving dif	ference
COS	equation	ons in (discre	te tim	e sigr	nals e	tc.								
				N	IAPP	ING (OF CO)s WI	TH P	Os ANI	D PSO	5			
				DDO									PROGI	RAM SPI	ECIFIC
COs				PRO	GKA	MOU	ICO	MES	(POS)				OUTC	COMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	1	1	2	0	2	1	2	0	3	1	1
CO2	3	3	2	2	1	2	1	0	1	0	2	0	3	2	1
CO3	3	3	2	2	0	1	0	0	1	0	2	0	3	1	1
CO4	3	2	1	2	1	0	1	1	0	0	3	0	2	2	2
CO5	3	3	2	2	1	0	1	0	2	1	2	0	3	1	2

CE1302	ENGINEERING GEOLOGY AND CONSTRUCTION MATERIALS	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES ◆ The stude ◆ earthquaroads, a ◆ To intro ★ To intro ♦ their pro UNIT I	dents will be able to understand the importance of geological knowledg ake, volcanism and to apply this knowledge in projects such as dams, t irport and harbor. duce students to various materials commonly used in civil engineering c operties. PHYSICAL GEOLOGY il engineering – branches of geology – structure of earth and its com	e su unne const	ch as els, b ruction	s eau ridg	rth, ges, and
weathering of r river, wind, gro quakes – Seisn	rocks – scale of weathering – soils - landforms and processes association of the sea – relevance to civil engineering. Plate tectonics nic zones in India.	ited – E	with arth	С	01
UNIT II	MINEROLOGY AND PETROLOGY				9
Physical , Cher Quartz group, Mica – muscov Classification c occurrence, er Sandstone, Lin rocks- Rock Ma (GSI), Q syster	mical and Optical Properties of minerals – Crystal System Physical Prop Feldspar group, Pyroxene - hypersthene and augite, Amphibole – horn ite and biotite, Calcite, Gypsum and Clay minerals. of rocks, Introduction to Index and Engineering properties of rocks. Des ingineering properties, Distribution and uses of Granite, Dolerite, mestone, Laterite, Shale, Quartzite, Marble, Slate, Gneiss and Schist – ass Rating (RMR), Rock Quality Designation (RQD), Geological Streng in for rock mass classification.	ertie nble scrip Ba Tes th Ir	tion, salt, t on dex	с	02
UNIT III	STRUCTURAL GEOLOGY AND APPLICATION OF GEO	OLO	GIC	AL	9
Geological map relevance to civ Geological con and Road cuttin Investigation o studies from Ind	os – Attitude of rocks –Study of Geological Structures – folds, faults and vil engineering. Inditions necessary for design and construction of Dams, Reservoirs, Ings - Hydrogeological investigations and mining - Coastal protection str f Landslides, causes and mitigation- Tsunami – causes and mitigatio dia.	Tunr ructu n. C	nts – nels, ires. Case	c	O3
UNIT IV	CONSTRUCTION MATERIALS				9
Introduction, Ty concrete – stee	/pes, Properties, Testing and Applications of -Bricks – stones – sand – c el – timber.	eme	ent –	С	04
UNIT V	MODERN CONSTRUCTION MATERIALS				9
Glass – Ceran Refractories – textiles – Geom	nics – Sealants for joints – Fibre glass reinforced plastic – Clay pro Composite materials – Types – Applications of laminar composites nembranes and Geotextiles for earth reinforcement.	oduc – F	ts – Fibre	С	05
	TOTAL	. : 4	5 PE	RIO	DS

1. Venkat Reddy. D. Engineering Geology, Vikas Publishing House Pvt. Lt, 2010.

 Parbin Singh. A "Text book of Engineering and General Geology", Katson publishing house, Ludhiana 2013. 3. Rajput. R.K., "Engineering Materials", S. Chand and Company Ltd., 2008.

4. Duggal.S.K., "Building Materials", 4th Edition, New Age International, 2008.

REFERENCE BOOKS

1. Blyth F.G.H. and de Freitas M.H., Geology for Engineers, Edward Arnold, London, 2017.

2. Bell .F.G.. "Fundamentals of Engineering Geology", B.S. Publications. Hyderabad 2011.

3. Varghese.P.C, "Building Materials", PHI Learning Pvt. Ltd, New Delhi, 2012.

4. Gambhir. M.L., & Neha Jamwal., "Building Materials, products, properties and systems", Tata McGraw Hill Educations Pvt. Ltd, New Delhi, 2012.

5. IS383–1970: Indian Standard specification for coarse and fine aggregate from natural Sources for concrete, 2011

6. IS1542–1992: Indian standard specification for sand for plaster, 2009.

COURSE OUTCOMES

Upon completion of the course, students will be able to

Acquire the knowledge of the topographical formation, interior earth, gradational activities and
 weathering and also the theory of plate tectonics which answers the reason for the occurrence
 of earthquake, landslides in an area.

CO2 Interpret the minerals and Rocks & assess its physical, chemical and mechanical properties.

CO3 Determine geological structures, its exploration and its relevance on Civil Engineering Projects.

CO4 Gain knowledge on the properties and tests to be conducted for various construction materials.

CO5 Introduce the knowledge of modern materials

MAPPING OF COs WITH POs AND PSOs

COs				PRC	OGRA	ΜΟ	JTCO	MES	(POs)				PROGRAM SPECIFI OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
C01	2	-	-	2	-	2	-	-	3	-	-	3	3	-	3		
CO2	2	-	-	2	-	2	-	-	2	-	-	2	3	-	3		
CO3	3	-	2	2	-	2	-	-	3	-	-	3	3	-	3		
CO4	3	-	2	1	-	2	-	-	2	-	-	2	2	-	2		
C05	3	-	2	1	-	2	-	-	2	-	-	2	2	-	2		

CE1303	STRENGTH OF MATERIALS	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
 To lear 	n the fundamental concepts of Stress in simple and complex states.				
To know	w the mechanism of load transfer in beams and the induced stresses due	e to s	simp	е	
bending	g and unsymmetrical bending				
To dete	rmine the deformation in determinate beams				
To know	w the basic concepts of analysis of indeterminate beams				_
UNIT I	SIMPLE AND COMPOUND STRESSES				9
Stresses in sin	ple and compound bars – Thermal stresses – Elastic constants - Thin cy	ylind	rical		
and spherical	shells – Biaxial state of stress – Principal stresses and principal planes -	– Mc	ohr's	C	:01
circle of stress	es - Torsion on circular shafts.				
UNIT II	BENDING OF BEAMS				9
Types of bea	ms and transverse loadings- Shear force and bending moment for	r Sir	nply	Τ	1
supported, car	tilever and over-hanging beams - Theory of simple bending – Bendin	g st	ress	С	:02
distribution –S	near stress distribution				
UNIT III	DEFLECTION OF BEAMS				9
Double Integra	tion method – Macaulay's method – Area moment method – Conjuga	te bo	eam		
method - Strair	n energy method for determinate beams.			C	;03
UNIT IV	INDETERMINATE BEAMS				9
Propped Canti	ever and Fixed Beams – Fixed end moments reactions, slope and defle	ctior	n for	Τ	
standard cases	s of loading — Continuous beams – support reactions and moments – 1	Гheo	rem	C	:04
of three mome	nts – Shear Force and Bending Moment Diagrams.				
UNIT V	UNSYMMETRICAL BENDING AND THEORIES OF FAILURE				9
Unsymmetrica	bending of beams - shear centre - Thick cylinders - Theories of f	failur	re –	Τ	
Principal stres	s, principal strain, shear stress, strain energy and distortion energy th	eorie	es –	C	:05
application pro	blems.				
	TOTAL	. : 45	5 PE	RIO	DS
TEXT BOOKS					

- 1. Vazirani.V.N, Ratwani.M.M, Duggal .S.K Analysis of Structures: Analysis, Design and Detailing of Structures-Vol.1, Khanna Publishers, New Delhi 2014.
- 2. Rajput.R.K. Strength of Materials, S.Chand& Company Ltd., New Delhi 2014.

- 1. Irwing H.Shames, James M.Pitarresi, Introduction to Solid Mechanics, Prentice Hall of India, New Delhi, 2002
- 2. Beer. F.P. &Johnston.E.R. "Mechanics of Materials", Tata McGraw Hill, Sixth Edition, New Delhi 2010.
- 3. James M.Gere., Mechanics of Materials, Thomas Canada Ltd., Canada, 2006.
- 4. Egor. P.Popov, Engineering Mechanics of Solids, Prentice Hall of India, Second Edition New Delhi 2015.

COURSE OUTCOMES

Upon	completi	ion of t	he cou	ırse, s	tuden	ts will	l be al	ole to							
CO1	Unders	tand th	e conc	epts o	fstres	s and s	strain,	princi	pal str	esses a	nd prin	cipal pl	anes.		
CO2	Determ bending	ine Sh g.	ear fo	rce ar	nd ber	nding	mome	ent in	beams	s and u	understa	and con	ncept of	theory of	f simple
CO3	Calcula deflecti	te the o	deflect	ion of	beam	s by d	ifferer	nt met	hods a	nd sele	ction o	f metho	od for det	ermining	slope or
CO4	Analyz settlem	e prop ents.	ped ca	antilev	ver, fiz	xed b	eams	and c	ontinu	ous be	ams fo	or exter	rnal loadi	ings and	support
CO5	Determ various	ermine the stresses due to Unsymmetrical bending of beams, locate the shear center, and study the ious theories of failure													
				N	IAPP	ING (OF CO)s WI	TH P	Os ANI	D PSO	5			
COs				PRC	GRA	ΜΟ	JTCO	MES	(POs)				PROGI OUTC	RAM SPI COMES (ECIFIC PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	3	3	-	1	1	-	-	2	3	3
CO2	-	2	-	2	2	3	-	-	-	-	-	-	3	2	2
CO3	-	3	3	3	2	3	-	-	-	-	2	-	2	3	3
CO4	-	3	2	2	2	-	-	2	-	-	2	1	2	2	1
CO5	-	-	3	3	-	-	-	2	-	-	2	1	2	2	1

CE1304	CONCRETE TECHNOLOGY	L	Т	Ρ	С		
		3	0	0	3		
OBJECTIVES							
🛠 To imp	art knowledge to the students on the properties of materials for conci	rete	by s	uita	ble		
tests, m	nix design for concrete and special concretes						
UNIT I	CONSTITUENT MATERIALS				9		
Cement - Diffe	rent types - Chemical composition and Properties – Hydration of cemen	t - T	ests				
on cement - IS	S Specifications - Aggregates – Classification - Mechanical properties a	nd t	ests	С	01		
as per BIS - Gi	ading requirements – Water - Quality of water for use in concrete.				-		
UNIT II	CHEMICAL AND MINERAL ADMIXTURES				9		
Accelerators -	- Retarders - Plasticizers - Super plasticizers - Water proofers -	Mir	neral				
Admixtures like	e Fly Ash, Silica Fume, Ground Granulated Blast Furnace Slag and Met	akad	oline	С	02		
- Effects on concrete properties.							
UNIT III	FRESH AND HARDENED PROPERTIES OF CONCRETE				9		
Workability - T	ests for workability of concrete - Segregation and Bleeding - Determir	natio	n of				
strength Prope	erties of Hardened concrete - Compressive strength – split tensile st	reng	gth -	С	03		
Flexural streng	gth - Stress-strain curve for concrete - Modulus of elasticity – dura	abilit	y of		•••		
concrete - wat	er absorption – permeability – corrosion test – acid resistance.						
UNIT IV	CONCRETE MIX DESIGN				9		
Principles of I	Mix Proportioning - Properties of concrete related to Mix Design -	Phy	sical				
properties of m	naterials required for Mix Design - Design Mix and Nominal Mix - BIS M	etho	od of	С	04		
Mix Design – A	CI Method of Mix Design - Mix Design Examples				-		
UNIT V	SPECIAL CONCRETES				9		
Light weight co	oncretes - foam concrete- self compacting concrete - vacuum concret	e - I	High				
strength concre	ete - Fibre reinforced concrete – Ferrocement - Ready mix concrete – S	IFC	- NC	С	05		
Shotcrete – Po	lymer concrete - High performance concrete - Geopolymer Concrete						
	TOTAL	.:4	5 PE	RIO	DS		

- 1. Gupta.B.L., Amit Gupta, "Concrete Technology", Jain Book Agency, 2010.
- 2. Shetty, M.S, "Concrete Technology", S.Chand and Company Ltd, New Delhi, 2003
- 3. Bhavikatti.S.S, " Concrete Technology", I.K.International Publishing House Pvt. Ltd., New Delhi, 2015
- 4. Santhakumar. A.R., "Concrete Technology", Oxford University Press India, 2006.

- 1. Neville, A.M; "Properties of Concrete", Pitman Publishing Limited, London, 1995
- 2. Gambhir, M.L; "Concrete Technology", 3rd Edition, Tata McGraw Hill Publishing Co Ltd, New Delhi, 2007
- 3. IS10262-2009 Recommended Guidelines for Concrete Mix Design, Bureau of Indian Standards, New Delhi, 1998.
- 4. Job Thomas, "Concrete Technology", Cengage Learning India Pvt. Ltd., Delhi, 2015
- Kumar P Mehta., Paulo J M Monterio., "Concrete Microstructure, Properties and Materials", McGraw Hill Education (India) Private Limited, New Delhi, 2016.

COUR	RSE OU	ГСОМ	ES												
Upon o	completi	ion of t	he cou	ırse, s	tuden	ts will	l be al	ole to							
CO1	The va	rious I	requir	emen	ts of c	emer	nt, ago	gregat	tes an	d wate	er for m	naking	concrete		
CO2	The ef	fect of	admix	xtures	on p	ropert	ies of	conc	rete						
CO3	The pr	opertie	es of c	concre	ete at	fresh	and h	arder	ned st	ate					
CO4	The co	ncept	and p	rocec	lure o	f mix	desig	n as p	er IS	metho	d				
CO5	The im	nportance and application of special concretes.													
		MAPPING OF COs WITH POs AND PSOs													
				PRO	GRA	мот	ITCO	MES	(POs)				PROGI	RAM SPI	ECIFIC
COs				110	0141		100		(1 05)				OUTC	COMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1	-	3	3	3	1	-	1	3	1	2	1
CO2	2	1	3	1	-	3	3	3	1	-	1	3	3	3	3
CO3	2	1	3	1	1	2	3	3	1	-	1	3	2	2	1
CO4	2	1	3	1	-	2	3	3	1	-	1	3	2	2	2
		1	1		1	2			1		1	_	2	2	2

CE1305	FLUID MECHANICS	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
 To intro 	duce the basic concepts of fluid statics, kinematics and dynamics and	ena	ble t	her	n to
solve pi	actical problems.				
 To stud 	y about flow through pipes and pipe networks and boundary layer conce	pts.			
To und	erstand the application of Dimensional analysis in similitude and mo	bdel	stuc	dy '	with
respect	to engineering problems.				
UNIT I	FLUID PROPERTIES AND STATICS				10
Scope of fluid r	nechanics - Definitions of a fluid - Methods of analysis – Continuum hypo	othe	sis -		
System and C	ontrol volume approach - Fluid properties - Fluid statics - Manometry	(Sir	nple		
manometer, P	iezometer, U-tube manometer, Differential Manometer: U-Tube Dif	fere	ntial	0	:01
manometer, In	verted U-tube differential Manometer) – Forces on plane and curved su	irfac	es -		
Buoyancy and	floatation - Stability of floating bodies.				
UNIT II	BASIC CONCEPTS OF FLUID FLOW				10
Kinematics - C	lassification of flows - Streamline, streak-line and path-lines - Stream	func	ction		
and velocity p	otentials - Flow nets; Dynamics - Application of control volume to co	ontin	uity,		
energy and mo	mentum - Euler's equation of motion along a stream line - Bernoulli's ec	luati	on -	0	:02
Applications to	o velocity and discharge measurements - Linear momentum equ	atio	n –		
Application to F	Pipe bends - Moment-of momentum equation.				
UNIT III	DIMENSIONAL ANALYSIS AND MODEL STUDIES				7
Fundamental d	imensions - Dimensional homogeneity - Rayleigh's method and Bucking	ghai	n Pi		
theorem - Dime	ensionless parameters - Similitude and model studies - Distorted and unc	disto	orted	0	:03
models.					
UNIT IV	INCOMPRESSIBLE VISCOUS FLOW				10
Reynolds expe	riment - Laminar flow in pipes and between parallel plates - Develop	mer	nt of		
laminar and tu	bulent flows in pipes - Darcy-Weisbach equation - Moody diagram - Ma	ajor	and	0	:04
minor losses of	flow in pipes - Pipes in series and parallel – Equivalent pipes.				
UNIT V	BOUNDARY LAYERS				9
Definition of t	ooundary layers - Laminar and turbulent boundary layers - Displa	cem	ient,	6	205
momentum and	d energy thickness - Momentum integral equation - Applications.				
	TOTAL	: 4	5 PE	RIC)DS

- 1. Streeter, V.L. Wylie, E. B. and Bedford K.W, Fluid Mechanics. (9th Ed.) Tata McGraw Hill, New Delhi, 2002.
- Modi P.N and Seth Hydraulics and Fluid Mechanics including Hydraulic Machines, Standard Book House New Delhi. 2003 (22nd edition, 2019)

- 1. Bansal R K, "Fluid Mechanics and Hydraulic Machines", Laxmi Publications, New Delhi, 2018.
- 2. Rajput, R K, "A text book of Fluid Mechanics", S Chand & Co., New Delhi, 2007(Reprint 2019).
- 3. Subramanya, K, "Fluid Mechanics and Hydraulic Machines Problems and Solutions" Tata McGraw Hill Publishing Company Ltd, New Delhi, 2010.

COUR	RSE OU	OUTCOMES													
Upon	completi	ion of t	he cou	ırse, s	tuden	ts will	be al	ole to							
CO1	Demor	nstrate	the d	ifferei	nce be	etwee	n soli	d and	fluid,	its pro	perties	and b	ehaviou	r in statio	;
COI	conditi	ons.													
cor	Apply	the cor	nserva	ation I	aws a	pplica	able to	o fluid	s and	its app	olicatio	n throu	ugh fluid	kinemati	cs and
02	dynam	ics.													
CO2	Formu	late the	e rela	tionsh	ip am	iong t	he pa	ramet	ters in	volvec	l in the	given	fluid phe	enomeno	n and
COS	to prec	dict the	perfo	orman	ces o	f proto	otype	by mo	odel s	tudies.					
CO4	Estima	ate losses in pipelines for both laminar and turbulent conditions and analysis of pipes													
04	conne	ected in series and parallel.													
COS	Explai	ain the concept of boundary layer and its application to find the drag force excreted by the													
005	fluid or	n the fl	at soli	id suri	face.										
	1			N	IAPP	ING (OF CO)s WI	TH P	Os ANI	D PSO:	5			
				DDO		ΜΟΙ	TCO	MES					PROGI	RAM SPI	ECIFIC
COs				FN U	GNA	WI UU	100	NIE2	(FUS)				OUTC	COMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	-	-	3	3	3	-	-	2	1	-	3	3	3	3
CO2	3	-	-	3	3	3	-	-	2	1	-	3	3	3	3
CO3	3	-	-	3	3	3	-	-	2	1	-	3	3	3	3
CO4	3	-	-	3	3	3	-	-	2	1	-	3	3	3	3
CO5	3	-	-	3	3	3	-	-	2	1	-	3	3	3	3

CE1306	SURVEYING	L	Т	Ρ	С				
		3	0	0	3				
OBJECTIVES									
 To lear 	n the fundamentals and various methods of plane and geodetic surveying	ng f	or so	lve	the				
real wo	rld problems.								
 To intro 	duce the concepts of Control Surveying.								
The stu	dent is also exposed to the Modern Surveying.								
 To learn 	n the various applications of Civil Engineering Surveys.								
UNIT - I	FUNDAMENTALS OF CONVENTIONAL SURVEYING				9				
Classifications	and basic principles of surveying - Equipment and accessories for range	ging	and						
chaining – Ba	sic principles Compass surveying - Plane Table Surveying accessor	ries	and						
methods - Lev	els and staves - Methods of levelling - Booking - Reduction – Curvat	ture	and	С	01				
refraction corre	ction – Contouring.								
UNIT - II	THEODOLITE SURVEYING AND COMPUTATIONS				9				
Horizontal and	d vertical angle measurements by Theodolite – Heights and dis	stand	ces-						
Tacheometric :	surveying – Trigonometric levelling - Computation of cross sectional ar	eas	and	С	02				
volumes – Earthwork calculations - Mass haul diagrams.									
UNIT - IIICONTROL SURVEYING AND ADJUSTMENT9									
Horizontal and	d vertical control- Methods – Triangulation - Traversing - Gale's	tab	le -						
Trilateration -	Concepts of measurements and errors – error propagation and lineari	zatio	on –	С	03				
adjustment me	thods – least square methods – angles, lengths and levelling network.				-				
UNIT - IV	ROUTE AND HYDROGRAPHIC SURVEYING				9				
Route Surveyi	ng - Reconnaissance - Route surveys for highways, railways and wate	erwa	iys -						
Simple curves	- Compound and reverse curves - Transition curves - Setting out	diffe	erent						
methods of sin	nple curve - Vertical curves - Hydrographic surveying – Tides - MSL - S	oun	ding	С	04				
methods - Th	ree-point problem – Determination of depth and position using mu	ılti-b	eam						
sounder and G	PS								
UNIT - V	MODERN SURVEYING				9				
Total Station:	Digital Theodolite, EDM, Electronic field book - Advantages - Pa	arts	and						
accessories -	working principle – Observables – Errors - COGO functions – Field pr	oce	dure						
and application	ns. GPS: Advantages - System components – Signal structure – S	Sele	ctive						
availability and	d Anti-spoofing – receiver components and antenna – Planning a	nd	data	С	05				
acquisition – D	ata processing - Errors in GPS – Field procedure and applications.								
	TOTAL	.:4	5 PE	rio	DS				
TEXT BOOKS									

- 1. T.P. Kanetkar and S.V.Kulkarni, Surveying and Levelling, Parts1 & 2, Pune Vidyarthi Griha Prakashan, Pune, 2008
- Dr.B.C.Punmia, Ashok K.Jain and Arun K Jain, Surveying Vol.I & II, Lakshmi Publications Pvt Ltd, New Delhi, 2005
- 3. S.S.Bhavikatti, Surveying Theory and Practice, I.K.International Publishing House Pvt. Ltd, New Delhi, 2010

1. R. Subramanian, Surveying and Levelling, Oxford University Press, Second Edition, 2012.

- James M.Anderson and Edward M. Mikhail, Surveying Theory and Practice, Tata McGraw Hill Education Private Limited, New Delhi, 2012
- 3. Bannister and S. Raymond, Surveying, Seventh Edition, Longman 2004
- 4. S.K. Roy, Fundamentals of Surveying, Second Edition, Prentice' Hall of India 2004
- 5. K.R. Arora, Surveying Vol I & II, Standard Book house , Twelfth Edition. 2013

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Introduce the rudiments of various surveying and its principles.

CO2 Imparts concepts of Theodolite Surveying and computation of area and volume calculation.

CO3 Understand the procedure for establishing horizontal and vertical control and its adjustment procedure.

CO4 Initiate the knowledge in Route surveying, Hydrographic surveying

CO5 Introduce the basics of Electronic Surveying

MAPPING OF COs WITH POs AND PSOs

COs				PRC	OGRA	ΜΟ	JTCO	MES	(POs)				PROGRAM SPECII OUTCOMES (PSC					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
C01	2	1	1	1	2	2	1	1	2	1	1	1	1	2	2			
CO2	3	2	2	1	2	2	1	1	2	1	1	1	2	2	2			
CO3	3	2	1	1	3	1	1	1	1	1	1	2	2	1	2			
CO4	1	2	2	1	3	2	1	1	2	1	1	2	3	3	2			
CO5	3	2	2	1	3	2	1	1	3	1	1	2	2	2	1			

CE13	07	STRENGTH OF MATERIALS LABORATORY	L	Т	Ρ	С
			0	0	4	2
OBJE	CTIVES					
*	To mak	te the students understand the mechanical properties of materials who	en s	ubje	ctec	l to
.*.	differen	t types of loading viz., tension, compression, torsion and bending.				
*		w the impact strength and the hardness humber of the given material.				
EXER	CISES					
1.	Tensior	n test on mild steel & RTS rods.				
2.	Torsion	test on metals.				
3.	Hardne	ss Test on metals.				
	• Roc	kwell Hardness Test				
	• Brin	ell Harness Test				
4.	Compre	ession test on helical spring.				
5.	Double	shear Test on metal.				
6.	Impact	test on metal specimen.				
	• Izoo	d Test				
	• Cha	arpy Test				
7.	Deflecti	on test on metal beam.				
8.	Compre	ession test on wood.				
		TOTAL	. : 4	5 PE	RIO	DS

- Bansal, R.K., "A Text Book of Strength of Materials", Laxmi Publications (P) Ltd., New Delhi, 2010.
- 2. IS1786-2008 (Fourth Revision, Reaffirmed 2013), 'High strength deformed bars and wires for concrete reinforcement Specification', 2008.
- 3. James M. Gere and Stephen P. Timoshenko, "Mechanics of Materials, (3rd edition), McGraw Hill Book Company, Singapore, 2002.
- 4. Rattan SS, "Strength of Material", McGraw Hill Educational Private Limited, India, 2011.

	LIST OF EQUIPMENT FOR A BATCH OF 30	STUDENTS
S.NO	Description of Equipment	Quantity
1	UTM of minimum 400 kN capacity	1
2	Torsion testing machine	1
3	Hardness testing machine (Rockwell and Brinell)	1 (Each)

4	Impa	ct test	ng ma	achine	Э				1								
5	Bean	n defle	ction	test a	ppara	tus							1				
6	Exte	nsome	ter										1				
7	Com	presso	meter									1					
8	Dial	gauges	6										Fev	V			
COUR	COURSE OUTCOMES																
Upon o	Upon completion of the course, students will be able to																
CO1	Acquire required knowledge on torsion and tension test on mild steel rod.																
CO2	Acquir	Acquire required knowledge on hardness of different metals.															
CO3	Acquir	Acquire required knowledge on stiffness characteristics of open and closed coil spring.															
CO4	Acquire required knowledge about double shear test on metal and impact test on metal.																
CO5	Acquire required knowledge on compressive strength of wood and deflection characteristics on steel beam.																
				N	APP	ING (OF CO)s WI	TH P	Os ANI	D PSO:	5					
	PROGRAM OUTCOMES (POr)																
COs				IRO	GRAI				(1 03)				OUTO	COMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
C01	3	2	-	3	-	2	-	1	2	-	-	3	3	3	-		
CO2	3	2	-	3	-	2	-	1	2	-	-	3	3	3	-		
CO3	3	2	-	3	-	2	-	1	2	-	-	3	3	3	-		
CO4	3	2	-	3	-	2	-	1	2	-	-	3	3	3	-		
CO5	3	2	-	3	-	2	-	1	2	-	-	3	3	3	-		

CE13	308
-------------	-----

SURVEYING LABORATORY

OBJECTIVES

To familiarize with the various surveying instruments and methods.

EXERCISES

- 1. Finding Pace Value of Surveyor using Chaining and Ranging.
- 2. Mapping of Building with cross staff and without cross staff using Offset.
- 3. Mapping and Area Calculation by using Chain Surveying.
- 4. Setting out works Foundation marking using tapes single Room and Double Room.
- 5. Computation of Included Angle after adjustment of Local Attraction.
- 6. Mapping and Area Calculation by using Compass Surveying.
- 7. Plane Table Surveying (Radiation and Intersection Method)
- 8. Fly leveling using dumpy level.
- 9. Transfer of Bench Mark using Check Levelling.
- 10. Observation of Angles by method of Repetition.
- 11. Observation of Angles by method of Reiteration.
- 12. Determination of elevation of an object using single plane method when base is accessible.
- 13. Determination of elevation of an object using single plane method when base is inaccessible.
- 14. Determination of Tacheometric Constants.
- 15. Heights and distances by stadia Tacheometry.
- 16. Heights and distances by Tangential Tacheometry.

TOTAL : 45 PERIODS

С

2

Ρ

4

L

0

Т

0

REFERENCE BOOKS

- 1. T.P.Kanetkar and S.V.Kulkarni, Surveying and Levelling, Parts1 & 2, Pune Vidyarthi Griha Prakashan, Pune, 2008
- 2. Dr.B.C.Punmia, Ashok K.Jain and Arun K Jain, Surveying Vol.I & II, Lakshmi Publications Pvt Ltd, New Delhi, 2005
- James M.Anderson and Edward M. Mikhail, Surveying Theory and Practice, Tata McGraw Hill Education Private Limited, New Delhi, 2012
- 4. Bannister and S. Raymond, Surveying, Seventh Edition, Longman 2004

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No	Description of Equipment	Quantity
1	Chain	6
2	Cross Staff	6
3	Ranging rod	6
4	Metal arrows	6
5	Metallic tape	6
6	Prismatic Compass with stand	3
7	Surveyor Compass with stand	1

	8		D	umpy	level	with a	alumir	num s	tand a	and ac	cessor	ies		6	
	9					Alum	inum	Level	ing st	aff				6	
	10		Т	heod	olite v	vith al	uminı	um sta	and a	nd acc	essorie	es		6	
COUR	COURSE OUTCOMES														
Upon o	Upon completion of the course, students will be														
CO1	Use conventional surveying tools such as chain/tape, compass, plane table in the field of civil														
COI	engineering applications.														
CO2	Prepare planimetric map														
CO3	Gain knowledge on Height determination by levelling														
CO4	Imparts knowledge in computation of Distance and Elevation using horizontal and vertical angles														
CO5	CO5 Establish horizontal and vertical control points.														
	MAPPING OF COs WITH POs AND PSOs														
	PROGRAM SPECIFIC														
COs				PKU	GKA	MUU		MES	(POS)				OUTO	COMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	3	1	-	-	-	-	-	1	2	1	-	2
CO2	3	3	1	3	-	1	-	-	-	1	-	3	1	-	2
CO3	3	1	1	3	1	-	-	-	-	-	1	2	1	-	2
CO4	3	1	1	3	1	-	-	-	-	-	1	2	1	-	2
CO5	3	3	1	3	-	1	-	-	-	1	-	3	1	-	2

MA1455 NUMERICAL METHODS L T P								
	4	0	0	4				
OBJECTIVES								
To introduce the basic concepts of solving algebraic and transcendental equation	ns.							
To introduce the numerical techniques of interpolation in various intervals in real	life							
To acquaint the student with understanding of numerical techniques of differentia	atior	n and						
integration this plays an important role in engineering and technology disciplines.								
To acquaint the knowledge of various techniques and methods of solving ordir	nary	diffe	ren	ntial				
equations								
To understand the knowledge of various techniques and methods of solving various	ario	us ty	pes	s of				
partial differential equations								
UNIT I SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS				12				
Solution of algebraic and transcendental equations - Fixed point iteration method -	Nev	vton						
Raphson method - Solution of linear system of equations - Gauss elimination me	ethc	od –	~	01				
Pivoting - Gauss Jordan method – Iterative methods of Gauss Jacobi and Gauss S	Seic	lel -	U					
Eigenvalues of a matrix by Power method.								
UNIT II INTERPOLATION AND APPROXIMATION				12				
Interpolation with unequal intervals - Lagrange's interpolation - Newton's divided dif	fere	ence						
interpolation - Cubic Splines - Difference operators and relations - Interpolation with	h e	qual	С	02				
intervals - Newton's forward and backward difference formulae.			-	-				
UNIT III NUMERICAL DIFFERENTIATION ANDINTEGRATION		ļ		12				
Approximation of derivatives using interpolation polynomials - Numerical integration	n u	sing						
Trapezoidal, Simpson's 1/3 rule and 3/8 rule – Romberg's Method - Two point and three	e p	oint						
Gaussian guadrature formulae – Evaluation of double integrals by Trapezoidal and Sir	nps	on's	С	03				
1/3 rules.	•							
UNIT IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL FOUA	TIO	NS		12				
Single step methods - Taylor's series method - Fuler's method - Modified Fuler's method	-the	nd –						
Fourth order Runge-Kutta method for solving first order equations-Multisten methods	-Mil	ne's	C	04				
and Adams - Bash forth predictor corrector methods for solving first order equations			U	04				
				40				
UNIT V BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL				12				
DIFFERENTIAL EQUATIONS								
Finite difference methods for solving second order two - point linear boundary value pro	bier	ns –						
Finite difference techniques for the solution of two differsional Laplace's and Po		ons	С	:05				
(Crank Nicholson) mothods One dimensional wave equation by explicit and	шп	JICIL						
τοται								

- 1. Burden, R.L and Faires, J.D, "Numerical Analysis", 10th Edition, Cengage Learning, 2017.
- 2. Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna Publishers, 10th Edition, New Delhi,2015.

REFERENCE BOOKS

1. Brian Bradie, "A Friendly Introduction to Numerical Analysis", Pearson Education, Asia, New

Delhi,2007.

	-	,																	
2.	Ger	ald. C	. F. a	and N	Nheat	tley. I	P. O.	, "Ap	plied	Nume	rical A	Analysi	s", Pear	son Edu	ucation,				
	Asia	a,7th E	dition	, New	Delh	i, 200 [°]	7.												
3.	Mat	hews,	J.H. "	Nume	erical I	Metho	ods fo	r Matl	nemat	tics, So	cience	and E	ngineerir	ng", 2nd	Edition,				
	Prer	ntice H	all,19	92.															
4.	Sankara Rao.K.,"Numerical Methods for Scientists and Engineers", PrenticeHallofIndiaPvt.																		
	Ltd, 4th Edition, New Delhi,2018.																		
5.	Sastry, S.S, "Introductory Methods of Numerical Analysis", PHI Learning Pvt. Ltd, 5th																		
	Edition, 2015.																		
COUR	SE OUTCOMES																		
Upon	completion of the course, students will be able to																		
CO1	completion of the course, students will be able toSolve algebraic, transcendental equation and system of linear equations compute eigenvalues																		
COT	Solve algebraic, transcendental equation and system of linear equations compute eigenvalues numerically.																		
CO2	Interpolate using standard methods like finite difference methods and cubic splines																		
CO3	Apply Numerical differentiation and integration for the observed data																		
CO4	Have an insight of finding the numerical solution of first order differential equation by Standard																		
	single step methods and multi-step methods.																		
CO5	Understand the finite difference solution of second order ordinary differential equation and get																		
005	the solution of the standard engineering partial differential equation by explicit method and																		
	Implicit method MAPPING OF COS WITH POS AND PSOS																		
								-	_	_		_	PROG	RAM SP	ECIFIC				
COs				PRO	GRA	MOU	тсоі	MES ((POs)				OUTC	OMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO10	PO11	PO12	PSO1	PS02	PSO3				
001		02	105	0		100	0	0	0	0	0	012		1002	1003				
CO1	2	3	3	2	2	1	0	0	0	0	0	2	2	1	1				
CO2	3	2	3	1	2	1	0	0	0	0	1	2	1	2	0				
CO3	3	2	2	1	2	1	0	0	0	0	1	2	2	1	1				
CO4	3	3	3	2	2	1	0	0	0	0	0	2	1	1 2 1					
CO5	3	3	2	1	2	1	0	0	0	0	0	2	2	1	0				

CE1402	WATER SUPPLY ENGINEERING	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
🛠 To equi	p the students with the principles and design of water treatment and dist	ribut	ion		
UNIT I	SOURCES OF WATER				9
Public water s	upply system – Planning, Objectives, Design period, Population for	ecas	ting;		
Water demand	d – Sources of water and their characteristics, Surface and Ground	lwat	er –		201
Impounding R	eservoir – Development and selection of source – Source Water of	quali	ty –		501
Characterizatio	n – Significance – Drinking Water quality standards.				
UNIT II	CONVEYANCE FROM THE SOURCE				9
Water supply -	- intake structures – Functions; Pipes and conduits for water – Pipe ma	ateria	als –		
Hydraulics of fl	ow in pipes – Transmission main design – Laying, jointing and testing o	f pip	es –	. (02
appurtenances	- Types and capacity of pumps - Selection of pumps and pipe material	s.			
UNIT III	WATER TREATMENT				9
Objectives – I	Jnit operations and processes – Principles, functions, and design	of w	/ater		1
treatment pla	nt units, flash mixers, Coagulation and flocculation –Clariflocc	uato	r		
sedimentation	- filtration - Disinfection - Ground water treatment - aerators, I	ron	and	0	03
Manganese rei	moval – Hardness - Softening - Residue Management – Construction, C	pera	ation		
and Maintenan	ce aspects.				
UNIT IV	ADVANCED WATER TREATMENT				9
Adsorption - [Desalination - R.O. Plant – demineralization – Adsorption - Ion ex	char	nge-		
Membrane Sys	stems – RO Reject Management - Iron and Manganese removal - Deflu	orida	ation	0	CO4
- Construction	and Operation & Maintenance aspects – Recent advances.				
UNIT V	WATER DISTRIBUTION AND SUPPLY				9
Requirements	of water distribution - Components - Selection of pipe material -	Sei	rvice		1
reservoirs - F	unctions - Network design - Economics - Analysis of distribution net	twor	ks –		
Computer appl	ications – Appurtenances – Leak detection. Principles of design of wate	er su	pply	0	05
in buildings – H	House service connection – Fixtures and fittings, systems of plumbing a	nd ty	pes		
of plumbing.					
	ΤΟΤΑΙ	.:4	5 PE	RIC	DS
L					

- 1. Garg, S.K. Environmental Engineering, Vol.IKhanna Publishers, New Delhi, 2010.
- 2. Modi, P.N., Water Supply Engineering, Vol.I Standard Book House, New Delhi, 2010.
- Punmia, B.C., Ashok Jain and Arun Jain, Water Supply Engineering, Laxmi Publications (P) Ltd., New Delhi, 2014.

- 1. Manual on Water Supply and Treatment, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 1999.
- Syed R. Qasim and Edward M. Motley Guang Zhu, Water Works Engineering Planning, Design and Operation, Prentice Hall of India Learning Private Limited, New Delhi, 2009.

COURSE OUTCOMES															
Upon	Upon completion of the course, students will be able to														
CO1	CO1 Create an insight into the structure of drinking water supply systems, including water transport, treatment and distribution														
CO2	Attain the knowledge in various unit operations and processes in water treatment														
CO3	To design the various functional units in water treatment														
CO4	To understand water quality criteria and standards, and their relation to public health														
CO5	5 To design and evaluate water supply project alternatives on basis of chosen criteria														
MAPPING OF COS WITH POS AND PSOS															
	PROGRAM OUTCOMES (POs)														
COs				PRC	GRA	MOU	тсо	MES	(POs)				PROGI OUTC	RAM SP	ECIFIC PSOs)
COs	P01	PO2	PO3	PRC	GRA PO5	M OU P06	TCO	MES ((POs)	PO10	P011	P012	PROGI OUTC PS01	RAM SP OMES (I PSO2	ECIFIC PSOs) PSO3
COs CO1	P01	PO2 -	PO3	PRC PO4	GRA PO5	M OU PO6 3	PO7	MES (P08 -	(POs) PO9 2	P010 -	P011 -	P012 -	PROGI OUTC PSO1	RAM SP OMES (I PSO2	ECIFIC PSOs) PSO3 1
COs C01 C02	P01 -	PO2 - -	PO3 1 1	PRC PO4 1	PO5 1	M OU PO6 3 2	P07 -	MES (PO8 - -	(POs) PO9 2 1	PO10 - -	PO11 - -	PO12 - -	PROGI OUTC PSO1 1 1	RAM SP OMES (I PSO2 - -	ECIFIC PSOs) PSO3 1 1
COs C01 C02 C03	P01	P02 - -	PO3 1 1 3	PRC PO4 1 1	PO5 1 1 1 1	M OU PO6 3 2 3	P07 - -	MES (PO8 - -	(POs) PO9 2 1 3	PO10 - -	PO11 - -	PO12 - - -	PROGI OUTC PSO1 1 1 3	RAM SP OMES (I PSO2 - - -	ECIFIC PSOs) PSO3 1 1 2
COs CO1 CO2 CO3 CO4	P01	PO2 - - -	PO3 1 1 3 1	PRC PO4 1 1 1 1 1	PO5 1 1 1 1 1 1	M OU PO6 3 2 3 1	P07 - - - -	MES (PO8 - - - -	(POs) PO9 2 1 3 1	P010 - - -	P011 - - -	P012 - - -	PROGI OUTC PSO1 1 1 3 1	RAM SP OMES (I PSO2 - - - -	ECIFIC PSOs) 1 1 2 1

CE1403	HIGHWAY ENGINEERING	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
 To give 	e an overview on the basics of highway engineering and to impart the	varic	ous p	oroc	ess
and me	thods involved in the planning, development, design, construction and	Mair	ntena	ance	e of
highwa	ys.				
UNIT - I	HIGHWAY PLANNING AND ALIGNMENT				9
History of road	d development in India – Classification of highways – Institutions for	High	way		
planning, desig	gn and construction at different levels – factors influencing highway alig	nme	ent –	C	` 01
Road ecology	- Engineering surveys for alignment, objectives, conventional and	mo	dern		,01
methods.					
UNIT - II	GEOMETRIC DESIGN OF HIGHWAYS				9
Typical cross	sections of Urban and Rural roads - Cross sectional elements - H	orizo	ontal		
curves, super	elevation, transition curves, widening of curves - Sight distances -	Ver	tical		<u>`</u>
curves, gradie	nts, hairpin bends - Lateral and vertical clearance at underpasses	3 -	IRC		,02
standards-Roa	d signs and safety. Urban utility services.				
UNIT - III	DESIGN OF FLEXIBLE AND RIGID PAVEMENTS				9
Design principl	es – pavement components and their role - Design practice for flexible a	and	rigid		<u>````</u>
pavements (IR	C methods only).				,03
UNIT - IV	HIGHWAY MATERIALS, CONSTRUCTION AND MAINTENANCE				9
Highway const	ruction materials, properties, testing methods – Construction practice o	f fle:	kible		
and concrete	pavements including modern materials and methods, Highway dra	inaç	je –	C	:04
Special conside	erations for hilly roads; Evaluation and Maintenance of pavements.				
UNIT - V	HIGHWAY ECONOMICS AND FINANCE				9
Introduction, H	lighway User Benefits, Highway Costs, Vehicle Operation Costs, E	cond	omic		
analysis, Highv	way projects under Public-Private Sector Participation, Bidding process, I	High	way	C	:05
finance.					
	TOTAL	. : 4!	5 PE	RIO	DS

TEXT BC	OKS										
1.	Veeraragavan.	Α,	Khanna.K	and	Justo.C.E.G.	Highway	Engineering,	Nem	Chand	&	Bros

- 2. Subramanian K.P., Highways, Railways, Airport and Harbour Engineering, Scitech Publications (India), Chennai, 2010
- C.Venkatramaiah., Transportation Engineering-Highway Engineering, Universities Press (India) Private Limited, Hyderabad, 2015
- 4. Subhash C Saxena, Textbook of Highway and Traffic Engineering. CBS Publishers, 2017.
- 5. R.Srinivasa Kumar., Textbook of Highway Engineering Universities Press (India) Private Limited, Hyderabad, 2011

Publishers, 2014

- 1. Partha Chakroborty and Animesh Das Principles of Transportation Engineering, PHI Learning Pvt. Ltd., 2005
- 2. Kadiyali. L. R. Principles and Practice of Highway Engineering, Khanna Technical Publications, Delhi, 1997.

- 3. Indian Road Congress (IRC), Guidelines and Special Publications on Planning and Design of Highways.
- 4. Sharma.S.K Principles , Practices and Design of Highway Engineering, S.Chand and Company Ltd.1995

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand the concepts and standards adopted in Planning, Design and construction of
001	Highways and its related infrastructures.
CO2	Apply the knowledge of science and engineering fundamentals in designing the geometrics for
002	an efficient Highway network and design concepts.
CO3	Designing various types of pavements to meet specified needs of safety, efficiency and long-
000	time sustainability by adopting various design standards.
CO4	Select appropriate methods for construction, evaluation and maintenance of roadways.
C:O5	Understand the bidding processes and types of highway projects and analyze the economic,
000	financial aspects of the highway projects

MAPPING OF COs WITH POs AND PSOs

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
C01	3	1	1	2	2	3	1	3	1	1	1	1	3	2	2
CO2	3	2	3	1	1	1	1	1	1	1	1	2	3	3	2
CO3	2	3	3	2	2	1	2	3	2	1	2	3	3	3	2
CO4	2	3	2	2	2	3	3	3	1	1	3	3	3	3	3
CO5	1	2	1	1	2	3	1	3	2	1	3	3	2	2	3

CE1404	APPLIED HYDRAULIC ENGINEERING	L	Т	Ρ	С							
		3	0	0	3							
OBJECTIVES												
 To understand the concept of open channel flow characteristics. 												
 To under 	erstand the concept of hydraulic jumps and surges.											
 To stud 	y the concepts of turbo machinery.											
UNIT I	UNIFORM FLOW			_	10							
Definition and	differences between pipe flow and open channel flow - Types of	Flo	w –									
Properties of c	open channel - Fundamental equations - Sub-critical, Super-critical and	ז ל	itical									
flow – Velocity	v distribution in open channel - Steady uniform flow: Chezy equation,	Man	ning	C	201							
equation – Bes	st hydraulic sections for uniform flow - Computation in Uniform Flow -	Spe	ecific									
energy and spe	ecific force.											
UNIT II	VARIED FLOW			_	9							
Dynamic equa	tions of gradually varied - Water surface flow profile classifications: H	lydr	aulic									
Slope, Hydraul	lic Curve - Profile determination by Numerical method: Direct step met	hod	and	C	:02							
Standard step	method – Change in Grades.											
UNIT III	RAPIDLY VARIED FLOWS				8							
Application of t	he momentum equation for RVF - Hydraulic jumps - Types – Energy dis	ssipa	ation	6	203							
 Positive and 	Negative surges.				<i>,</i> 00							
UNIT IV	TURBINES				9							
Turbines - Clas	ssification - Impulse turbine – Pelton wheel - Reaction turbines – Francis	s tur	bine									
- Kaplan turbin	e - Draft tube - Cavitation - Performance of turbine - Specific speed - F	luna	away	C	204							
speed.												
UNIT V	PUMPS				9							
Centrifugal pu	mps - Minimum speed to start the pump - NPSH - Cavitations in	pum	ps -									
Operating char	acteristics - Multistage pumps - Reciprocating pumps - Negative slip -	Indic	cator	C	205							
diagrams and i	ts variations - Air vessels - Savings in work done.											
	TOTAL	.:4	5 PE	RIC	DS							
 TEXT BOOKS												

1.	Modi, P.N, and Seth S.M.," Hydraulic and Fluid Mechanics", Standard Book House, 201	2.

2. Jain A. K. "Fluid Mechanics including Hydraulic Machines", Khanna Publishers, 1998.

REFERENCE BOOKS

- 1. Ven Te Chow, Open Channel Hydraulics, McGraw Hill, New York, 2009.
- 2. Subramanya K., Flow in open channels, Tata McGraw Hill, New Delhi, 2000.
- 3. Chandramouli P N, Applied Hydraulic Engineering, Yes Dee Publisher, 2017

COURSE OUTCOMES

Upon completion of the course, students will be able to

001	Describe the basics of open channel flows, its classifications and analysis of uniform flow in
COT	steady state conditions with specific energy concept and its application
CO2	Analyse steady gradually varied flow, water surface profiles and its length calculation using
	direct and standard step methods with change in water surface profiles due to change in
	grades.

CO3	CO3 Derive the relationship among the sequent depths of steady rapidly varied flow and estimating energy loss in hydraulic jump with exposure to positive and negative surges.																
CO4	Design turbines and explain the working principle																
CO5	Differentiate pumps and explain the working principle with characteristic curves and design centrifugal and reciprocating pumps.																
				Μ	APPI	NG O	F CO	s WI1	TH PC	s ANI	D PSO	S					
				PRO	GRA	моц	ΙΤΟΟΙ	MES	(POs)				PROG	RAM SP	ECIFIC		
COs				1.1.0					103)				OUTCOMES (PSOs)				
	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
C01	PO1	PO2 3	PO3	PO4 3	PO5	PO6	PO7	PO8	PO9	PO10 1	PO11 1	PO12 3	PSO1	PSO2	PSO3		
CO1 CO2	PO1 3 3	PO2 3 3	PO3 2 2	PO4 3 3	PO5 1 2	PO6 2 2	P07 2 2	PO8 2 2	PO9 2 2	PO10 1 1	PO11 1 1	PO12 3 3	PSO1 1 1	PSO2 2 2	PSO3 2 2		
CO1 CO2 CO3	PO1 3 3 3	PO2 3 3 3	PO3 2 2 2 2	PO4 3 3 3	P05 1 2 1	PO6 2 2 2	P07 2 2 2	PO8 2 2 2 2	PO9 2 2 2 2	PO10 1 1 1 1	P011 1 1 1 1	PO12 3 3 3	PSO1 1 1 1 1	PSO2 2 2 2 2 2	PSO3 2 2 3		
CO1 CO2 CO3 CO4	PO1 3 3 3 3 3 3 3	PO2 3 3 3 3	PO3 2 2 2 2 2 2	PO4 3 3 3 3 3	PO5 1 2 1 1 1 1	P06 2 2 2 2 2	P07 2 2 2 2	P08 2 2 2 2 2 2 2	PO9 2 2 2 2 2 2 2	PO10 1 1 1 1 1 1 1	P011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO12 3 3 3 3	PS01 1 1 1 1 1 1 1	PSO2 2 2 2 2 2 2 2 2	PSO3 2 2 3 3		

CE1405	STRUCTURAL ANALYSIS – I	L	Τ	Ρ	С						
		3	0	0	3						
OBJECTIVES											
✤ To introduce the students classical methods such that Slope deflection and Morr											
distribution method in analysing indeterminate structures.											
 To introduce the students matrix methods such as Flexibility method and stiffness method 											
analysir	ng indeterminate structures.										
UNIT I	STRAIN ENERGY METHOD				9						
Determination	of Static and Kinematic Indeterminacies – Analysis of continuous beam	is, p	lane								
frames and in	determinate plane trusses by strain energy method (up to two de	gree	e of	С	01						
redundancy).											
UNIT II	SLOPE DEFLECTION METHOD				9						
Slope deflectio	n equations – Equilibrium conditions - Analysis of continuous beams a	and	rigid								
frames – Rigic	I frames with inclined members - Support settlements- symmetric fran	nes	with	С	02						
symmetric and	skew-symmetric loadings.										
UNIT III	MOMENT DISTRIBUTION METHOD				9						
Stiffness and	carry over factors - Distribution and carryover of moments - Ana	alysi	s of								
continuous Bea	ams- Plane rigid frames with and without sway – Support settlement - sy	mm	etric	С	03						
frames with syr	nmetric and skew-symmetric loadings.										
UNIT IV	FLEXIBLITY METHOD				9						
Primary struct	ures - Compatibility conditions – Formation flexibility matrices - Ana	alysi	s of								
indeterminate	pin- jointed plane frames, continuous beams and rigid jointed plane fra	ame	s by	С	04						
direct flexibility	approach.										
UNIT V	STIFFNESS METHOD				9						
Restrained str	ucture –Formation of stiffness matrices - equilibrium condition -	Ana	lysis	C	05						
of Continuous	Beams, Pin-jointed plane frames and rigid frames by direct stiffness mether	hod.									
	TOTAL	. : 4	5 PE	RIO	DS						

- Bhavikatti, S.S,Structural Analysis,Vol.1,& 2, Vikas Publishing House Pvt.Ltd., NewDelhi-4,2014.
- Bhavikatti, S.S, Matrix Method of Structural Analysis, I. K. International Publishing House Pvt.Ltd.,New Delhi-4, 2014.
- 3. Vazrani.V.N And Ratwani, M.M, Analysis of Structures, Vol.II, Khanna Publishers, 2015.
- 4. Pandit G.S.and Gupta S.P., Structural Analysis–A Matrix Approach, Tata McGraw Hill Publishing Company Ltd., 2006

- 1. Punmia. B.C, Ashok Kumar Jain & Arun Kumar Jain, Theory of structures, Laxmi Publications, New Delhi, 2004.
- 2. Hibbeler, R.C., Structural Analysis, VII Edition, Prentice Hall, 2012.
- 3. Reddy.C.S, "Basic Structural Analysis", Tata McGraw Hill Publishing Company, 2005.
- 4. Rajasekaran.S, &G.Sankarasubramanian., "Computational Structural Mechanics", PHI
- 5. Learning Pvt. Ltd, 2015

6.	Negi L.S.and Jangid R.S.	,Structural Analysis, Tata I	McGraw Hill Publishing Co.Ltd.2004.
----	--------------------------	------------------------------	-------------------------------------

COURSE OUTCOMES															
Upon completion of the course, students will be able to															
CO1	Analyse the continuous beams, pin-jointed indeterminate plane frames and rigid plane frames														ames
COT	by strain energy method														
CO2	Analyse the continuous beams and rigid frames by slope defection method														
000	Understand the concept of moment distribution and analysis of continuous beams and rigid												gid		
003	frames	s with a	and wi	thout	sway										
<u> </u>	Analys	e the i	ndete	rmina	ite pin	jointe	ed pla	ne fra	ames	continu	Jous b	eams a	and rigid	frames u	ising
CO4	matrix	flexibil	ity me	ethod.											
CO5	Under	stand t	he co	ncept	of ma	atrix s	tiffnes	s me	thod a	and an	alysis	of cont	inuous b	eams, pi	n
005	jointed	trusse	es and	l rigid	plane	fram	es.								
				Μ	APPI	NG O	F CO	s WI	TH PC)s ANI	D PSO	S			
													PROG	RAM SP	ECIFIC
COs		OUTCOMES (POS) OUTCOMES (PSOs)												PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	1	1	-	-	2	3	1	2	3	2	2
CO2	3	3	3	2	1	1	-	-	2	3	1	2	3	2	2
CO3	3	2	1	2	1	1	-	-	2	3	1	2	3	2	2
CO4	3	3	2	2	1	1	-	-	2	3	1	2	3	2	2
CO5	3	3	2	2	1	1	-	-	2	3	1	2	3	2	2
CE1406 GEOTECHNICAL ENGINEERING - I L T P															
---	---	--------	-------	------	------	--	--	--	--	--					
		3	0	0	3										
OBJECTIVES															
🛠 To imp	art knowledge to classify the soil based on index properties and t	to a	sses	s th	neir										
enginee	ering properties based on the classification.														
To familia	iliarize the students about the fundamental concepts of compaction, flo	ow tl	nrou	gh s	oil,										
stress t	ransformation, stress distribution, consolidation and shear strength of so	ils.													
 To impa 	art knowledge of design of both finite and infinite slopes.														
UNITI	SOIL CLASSIFICATION AND COMPACTION			1	9										
History – form	nation and types of soil – composition - Index properties – clay min	nera	logy												
structural arran	igement of grains – description – Classification – BIS – US – Phase rela	ation	ship	С	:01										
	– theory – laboratory and field technology – field Compaction method -	- fac	ctors		• ·										
influencing con	npaction.				-										
UNIT II	EFFECTIVE STRESS AND PERMEABILITY				9										
Soil - water -	- Static pressure in water - Effective stress concepts in soils - (Capi	llary												
phenomena- F	Permeability interaction – Hydraulic conductivity – Darcy's law – Determin	natic	on of												
Hydraulic Cond	ductivity – Laboratory Determination (Constant head and falling head n	neth	ods)	C	02										
and field meas	urement pumping out in unconfined and confined aquifer – Factors inf	luen	cing		02										
permeability of	soils - Seepage - Two-dimensional flow - Laplace's equation - Introduction	uctic	n to												
flow nets – Sim	ple problems. (Sheet pile and Wier)														
UNIT III	STRESS DISTRIBUTION AND SETTLEMENT				9										
Stress distribut	ion in homogeneous and isotropic medium – Boussinesq theory – (Po	oint l	oad,												
Line load and	UDL) - Use of New marks influence chart -Components of settler	men	t —												
Immediate and	l consolidation settlement – Terzaghi's one dimensional consolidation	theo	ry –	С	03										
Computation o	f rate of settlement $\sqrt{ ext{t}}$ and log $ ext{t}$ methods– e-log $ ext{p}$ relationship- cons	olida	ation												
settlement calc	ulation - Normally Consolidated clays – Over Consolidated clays.														
UNIT IV	SHEAR STRENGTH OF SOIL			1	9										
Shear strengt	n of cohesive and cohesion less soils - Mohr-Coulomb failure t	heor	у –												
Measurement	of shear strength - Direct shear, Triaxial compression, UCC and Var	ne sl	hear	С	04										
tests – Pore pr	essure parameters – Cyclic mobility – Liquefaction.														
UNIT V	SLOPE STABILITY				9										
Stability Analys	sis - Infinite slopes and finite slopes - Total stress analysis for saturate	d cl	ay –												
Friction circle i	method – Use of stability number – Method of slices – Fellenius and	Bish	op's	С	05										
method - Slope	protection measures.														
	TOTAL	.:4	5 PE	RIO	DS										
TEXT BOOKS		_	_	_											
1. Murthy, V	N.S., "Soil Mechanics and Foundation Engineering", CBS Publishers Di	strib	utior	Ltc	J.,										

- 2. Gopal Ranjan and Rao, A.S.R., "Basic and Applied Soil Mechanics", New Age Ltd. International Publisher New Delhi (India) 2006
- 3. Punmia, B.C., "Soil Mechanics and Foundations", Laxmi Publications Pvt. Ltd. New Delhi, 2005

New Delhi. 2015

1. McCarthy, D.F., "Essentials of Soil Mechanics and Foundations". Prentice-Hall, 2006

2.	Coduto, D.P., "Geotechnical Engineering - Principles and Practices", Prentice Hall of India														
	Pvt.Ltd.	New D	elhi, 2	2010											
3.	Das, B.	M., "P	rincip	les o	f Geo	otechr	nical	Engin	eering	g". Bro	ooks /	Coles	; / Thon	npson L	earning
	Singapo	re, 8th	Editio	on, 20	13										
4.	Arora, K	R., "S	oil Me	echan	ics an	id Fou	undati	on Er	nginee	ering", S	Standa	ard Pub	olishers a	and Distr	ibutors,
	New De	lhi, 7th	Editio	on, 20	17(Re	eprint)								
5.	Palaniku	ımar.M	I., "So	il Me	chanio	cs", P	rentic	e Hall	l of In	dia Pv	t. Ltd,	Learnii	ng Privat	e Limite	d Delhi,
	2013														
6.	Craig.R.	F., "Sc	oil Meo	chanic	cs", E	& FN	Spon	i, Lon	don a	nd Nev	<i>w</i> York	, 2012			
7.	Purusho	thama	Raj.	P., "	Soil I	Mecha	anics	and	Found	dations	s Engi	neering	g",2nd E	dition, F	earson
	Educatio	on, 201	3												
8.	Venkatra	amaiah	n.C., "	Geote	echnic	al En	ginee	ring",	New	Age In	ternatio	onal P	vt. Ltd., N	lew Delh	ni, 2017
COU	RE OUTCOMES														
Upor	n completion of the course, students will be able to														
CO1	Demonstrate an ability to identify various types of soils and its properties, familiarize with														
001	compaction, formulate and solve engineering Problems														
CO2	Show	the ba	asic u	Inders	standi	ng of	flow	throu	ugh s	oil me	dium a	and its	s impact	of engi	neering
002	solutio	n													
CO3	Under	stand	about	the	basic	cond	cept c	of stre	ess d	istribut	ion in	loade	d soil m	edium a	nd soil
	settlen	nent du	ue to o	conso	lidatic	n									
	Show	the un	dersta	nding) of sh	near s	treng	th of s	soils a	nd its i	impact	of eng	jineering	solution	s to the
CO4	loaded	l soil n	nediur	n anc	l also	will b	e awa	are of	cont	empora	ary iss	ues or	shear s	trength o	of soils,
	and														
CO5	Demo	nstrate	an a	bility t	o des	ign b	oth fir	nite ar	nd infi	nite slo	opes, o	compoi	nent and	process	as per
	needs	and sp	pecific	ations	S.										
				Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	S			
				PRO	GRA			MES	(POs)				PROG	RAM SP	ECIFIC
COs	;			T NO					(1 0 3)				OUTC	OMES (PSOs)
	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3
CO2	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3
CO3	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3
CO4	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3
CO5	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3

CE14	07	ADVANCED SURVEYING LABORATORY	L	Т	Ρ	С
			0	0	4	2
OBJE	CTIVES					
*	To fami	liarize with the various surveying instruments and methods in field.				
*	To impa	art Hands on experience of basics of Total Station.				
*	To impa	art Hands on experience of basics of GPS.				
*	To acqu	uire practical knowledge in the field of Remote Sensing				
*	To impa	art Hands on experience of basics of cartography and GIS.				1
EXER	CISES					
	1.Conto	our Mapping using Grid Levelling.				
	2.Conto	our Mapping using Radial Levelling.				
	3.Longi	tudinal and Cross Sectional Levelling- Cut and fill volume calculation.				
	4.Curve	e Setting By Deflection Angle Method and Two theodolite method.				
	5.Trave	rse Using Total Station.				
	6.Use c	of GPS to determine latitude and longitude.				
	7.Trave	rse Using GPS.				
	8.Prepa	aration of Base Map from Survey of India Topo sheets				
	9.Data	Input – Onscreen Digitisation – Creation of Point, Line and Polygon laye	rs			
	10. Proj	ection, Reprojection and Coordinate Transformation of Maps				
	11. Pre	paration of Land use/land cover map using Satellite Data.				
	12. Attri	bute data input and Measurement of Distance, Area				
	13. Data	a Conversion – Vector to Raster and Raster to Vector				
		ΤΟΤΑΙ	. : 4	5 PE	RIO	DS

- 1. J. Uren and W.F. Price, Surveying for Engineers, Palgrave macmillan, Fifth Edition, 2010.
- Dr.B.C.Punmia, Ashok K.Jain and Arun K Jain, Surveying Vol.I & II, Lakshmi Publications Pvt Ltd, New Delhi,17th Edition,2016.
- 3. W. Schofield and M. Breach, Elesevier, Engineering Surveying, Sixth Edition, 2007.
- 4. R. Subramanian, Surveying and Levelling, Oxford University Press, Second Edition, 2012.
- 5. Bannister and S. Raymond, Surveying, Seventh Edition, Longman 2004
- 6. S.K. Roy, Fundamentals of Surveying, Second Edition, Prentice' Hall of India 2004
- 7. K.R. Arora, Surveying Vol I & II, Standard Book house , Eleventh Edition. 2013
- 8. T.P.Kanetkar and S.V.Kulkarni, Surveying and Levelling, Parts1 & 2, Pune Vidyarthi Griha Prakashan, Pune, 24th Reprint, 2015.
- 9. Lillesand T.M., and Kiefer, R.W. Remote Sensing and Image interpretation, VI edition of John Wiley & Sons-2015.
- John R. Jensen, Introductory Digital Image Processing: A Remote Sensing Perspective, 4th Edition, 2015.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

															_	
	SI.No)			D	escri	ption	of Ec	quipn	nent			Q	uantity		
	1		D	umpy	level	with a	alumin	num s	tand a	and ac	cessor	es		6	-	
	2					Alum	inum	Level	ing st	aff				6		
	3		Т	heod	olite v	vith al	uminu	um sta	and a	nd acc	essorie	es		6		
	4		Т	heod	olite v	vith al	uminu	um sta	and a	nd acc	essorie	es		3		
	5					H	land H	Held C	SPS					3		
	6					0	pen S	ource	GIS					-		
COUR Upon	RSE OU comple	TCOM etion o	ES of the	cour	se, st	udent	ts will	l be								
CO1	To pre	o prepare a Contour map using various methods. o establish horizontal and vertical control points using Total Station														
CO2	To est	establish horizontal and vertical control points using Total Station														
CO3	To est	To establish horizontal and vertical control points using GPS.														
CO4	To inp	ut the	data ii	n the	GIS a	nd pr	epare	the N	lap La	ayout [Design	proces	SS.			
CO5	To und	derstar	nd the	conc	epts c	of Map	o Proje	ection	in Gl	S.						
				Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	s				
				PRO	GRA		тсоі	MES	(POs)				PROG	RAM SP	ECIFIC	
COs				I KC					(1 0 3)				OUTC	OMES (PSOs)	
	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
C01	3	1	1	3	1	1	1	1	1	1	1	2	2	1	3	
CO2	3	3	1	3	2	1	1	1	1	1	1	3	2	1	3	
CO3	3	1	1	3	1	1	1	1	1	1	1	2	2	1	3	
CO4	3	1	1	3	1	1	1	1	1	1	1	2	2	1	3	
CO5	3	3	1	3	2	1	1	1	1	1	1	3	2	1	3	

CE1408	HYDRAULIC ENGINEERING LABORATORY	L	Τ	Ρ	С
		0	0	4	2
OBJECTIVES			. ,.		
of pumi	vide hands on experience in calibration of flow meters, performance chara	acte	ristic	S	
EXERCISES					
A. MEASU	REMENT OF FLOW PROPERTY				
1. Deter	mination of coefficient of discharge of orifice.				
2. Flow	measurement in pipe using orificemeter				
3. Flow	measurement in pipe using venturimeter				
4. Flow	measurement in open channel using notches				
5. Verifi	cation of Bernoulli's theorem				
B. MEASU	REMENT OF LOSSES IN PIPES				
6. Deter	mination of minor losses in pipes				
7. Deter	mination of frictional loss in pipes				
C. DETERI	MINATION OF METACENTRIC HEIGHT				
8. Deter	mination of metacentric height of a floating body				
D. TURBIN	IE CHARACTERISTICS				
9. Perfo	rmance test on Pelton wheel turbine				
10. Perf	ormance test on Francis turbine				
11. Stud	dy of impact of jet on vanes				
E. PUMP C	CHARACTERISTICS				
12. Perf	ormance test on multi-stage centrifugal pump				
13. Perf	ormance test on reciprocating pump				
14. Perf	ormance test on submersible pump.				
	TOTAL	: 4	5 PE	RIO	DS

- 1. Hydraulic Laboratory Manual, Centre for Water Resources, Anna University, 2015.
- 2. Modi P.N. and Seth S.M., Hydraulics and Fluid Mechanics. Standard Book House. New Delhi, 2017.
- 3. Subramanya K, Fluid Mechanics and Hydraulic Machines, Tata McGraw Hill Edu. Pvt. Ltd, 2011

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No	Description of Equipment	Quantity
1	Closed Circuit Bernoulli's theorem – Verification Apparatus	1 No
2	Closed Circuit Flow through Notch Apparatus	1 No
3	Closed Circuit Hydraulic Flume	1 No
4	Closed Circuit Flow through Orifice & Mouth Piece Apparatus	1 No

	5	Clo	sed C due to	Circuit	Appa len co	iratus ontrac	for Detion, E	eterm Enlarg	inatio gemer	n of Lo nt Beno	sses i s and	n pipel Elbow	ine	1 No			
	6			'	Variat	ole Sp	eed F	Recipi	rocatir	ng Pun	np			1 No			
	7				Cons	stant S	Speed	Cent	trifuga	l Pum	p			1 No			
	8			Trip	le Clo	sed C	Circuit	Gear	· Oil P	ump te	est rig			1 No			
	9	-	Triple	Open	Circu	uit De	ep We	ell Sul	bmerg	jible P	ump-T	est Rig		1 No			
	10		T	riple C) pen (Circui	t Pelto	on Wł	neel T	urbine	Test F	Rig		1 No			
	11			Tripl	e Ope	en Cir	cuit F	rancis	s Turb	ine Te	st Rig			1 No			
	12			Trip	le Op	en Cir	cuit K	Caplar	n Turb	ine Te	st Rig			1 No			
	13					Pipe	Friction	on Ap	parat	JS				1 No			
	14						Orific	cemet	er					1 No			
	15						Ventu	urimet	ter					1 No			
	16						Rota	amete	er					1 No			
	17					Pito	t Tube	e Test	t Setu	р				1 No			
	18		Triple	e App	aratu	s for c	letern	ninatio	on of I	Metace	entric H	leight		1 No			
COUR	SE OU																
Upon	Upon completion of the course, students will be																
CO1	Apply Bernoulli equation for calibration of flow measuring devices.																
CO2	Measu	re frict	ion fa	ctor ir	n pipe	s and	com	pare v	vith M	oody d	diagrar	n					
CO3	Detern	nine th	e perf	orma	nce cl	harac	teristi	cs of	rotody	namic	pump	s.					
CO4	Detern	nine th	e perf	orma	nce cl	harac	teristi	cs of	positiv	/e disp	lacem	ent pur	nps.				
CO5	Detern	nine th	e perf	orma	nce cl	harac	teristi	cs of t	turbin	es.							
				Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	S					
									(- -)				PROG	RAM SP	ECIFIC		
COs				PRO	GRA	MOU	TCO	MES ((POS)				OUTC	OMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	2	2	1	3	1	2	2	2	2	1	1	2	2	1	1		
CO2	3	2	1	3	1	2	2	2	2	1	1	2	3	1	1		
CO3	3	3	2	3	1	2	2	2	3	1	1	2	3	2	1		
CO4	3	3	2	3	1	2	2	2	3	1	1	2	3	2	1		
CO5	3	3	2	3	1	2	2	2	3	1	1	2	3	2	1		

HS1410	PROFESSIONAL SKILLS LAB	L	Т	Ρ	С
	(Common to AI & DS, CIVIL, CHEMICAL, CSE, EEE & EIE)	0	0	2	1
OBJECTIVES					
 Enhance 	e the Employability and Career Skills of students				
 Orient t 	he students towards grooming as a professional				
 Make the 	nem Employable Graduates				
 Develop 	o their confidence and help them attend interviews successfully.				
LIST OF EXPE	RIMENTS				1
UNIT I					6
Introduction to	Soft Skills- Hard skills & soft skills - employability and career Skills-G	Foor	ning		
as a profession	nal with values—Making an Oral Presentation–Planning and preparing	a m	odel		
presentation; C	Organizing the presentation to suit the audience and context; Connecting	with	the	С	01
audience durir	ng presentation; Projecting a positive image while speaking; Empt	nasis	on		
effective body	anguage-General awareness of Current Affairs.				
UNIT II					6
Self-Introduction	n-organizing the material - Introducing oneself to the audience - introdu	ucing	the		
topic - answe	ring questions – individual presentation practice— Making a Pow	er F	Point		
Presentation	· Structure and format; Covering elements of an effective presentation	on; E	Body		
language dyn	amics. Making an Oral Presentation–Planning and preparing a	a m	odel	С	02
presentation; C	Organizing the presentation to suit the audience and context; Connecting	with	the		
audience durir	ng presentation; Projecting a positive image while speaking; Empl	nasis	on		
effective body	anguage				
UNIT III					6
Introduction to	Group Discussion— Participating in group discussions – understandir	na a	roup		<u> </u>
dynamics - bra	instorming the topic questioning and clarifying -GD strategies- Struc	ture	and		
dynamics of a	GD: Techniques of effective participation in group discussion: Prep	arino	for	С	03
aroup discussion	on: Accepting others' views / ideas: Arguing against others' views or idea	as e	tc		
		.0, 0			^
	a apopling: Droparing for a apopph: Easturna of a good apopch. Creativ	<u></u>	ith a		Ø
	speaking, Preparing for a speech; Features of a good speech; Speaking	ig w	im a		
microphone. (i	-amous speeches may be played as model speeches for learning tr	1e a	rt of		
public speaking	g). Interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress code – body language – attending job interview etiquette – dress	ervie	WS-	С	:04
telephone/skyp	e interview -one to one interview &panel interview –Job Interviews: purp	ose	and		• ·
process; How t	o prepare for an interview; Language and style to be used in an interview	<i>№</i> ; Ту	/pes		
of interview que	estions and how to answer them.				
UNIT V					6
Recognizing of	lifferences between groups and teams- managing time managing	str	ess-		
networking pro	ofessionally- respecting social protocols understanding career mana	igem	ent-	С	:05
developing a lo	ng- term career plan making career changes			1	
	ΤΟΤΑΙ	. : 30) PE	RIO	DS
L	····•·				

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS

- 1. One Server
- 2. 30 Desktop Computers
- 3. One Hand Mike

	4. One LCD Projector														
REFE	RENC	E BOO	KS												
	1. E	utterfiel	d, Jefl	f Soft	Skills	for Ev	/eryor	ne. Ce	engag	je Lear	ning: N	New De	elhi, 201	5	
	2. E	. Sures	sh Ku	mar	et al.	Com	muni	catior	n for	Profes	sional	Succ	ess. Ori	ent Blac	kswan:
	F	lyderab	ad, 20	15											
	3. F	laman,	Meena	akshi	and S	ange	eta Sł	narma	a. Prot	fessior	al Cor	nmuni	cation. O	xford Un	niversity
	Press: Oxford, 2014														
	4. S. Hariharan et al. Soft Skills. MJP Publishers: Chennai, 2010														
	5. Interact English Lab Manual for Undergraduate Students, Orient BalckSwan: Hyderabad,														
	2016.														
COUR	COURSE OUTCOMES														
Upon completion of the course, students will be able to															
CO1 Make effective presentations															
CO2	O2 Participate confidently in Group Discussions														
CO3	Atter	nd job in	terviev	ws an	d be s	succe	ssful i	n the	m.						
CO4	Deve	lop ade	quate	Soft S	Skills	requir	ed for	r the v	workp	lace					
CO5	Deve	lop thei	r spea	king s	skills t	o ena	ble th	iem s	peak	fluently	/ in rea	l conte	exts		
				Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	S			
													PROG	RAM SP	ECIFIC
COs				PRO	GRA	MOU	TCOI	MES	(POs)	1			OUTC	OMES (PSOs)
	PO	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	2	0	2	1	0	0	0	2	3	0	0	1	0	3
CO2	0	2	0	2	0	0	0	0	2	3	0	0	1	0	3
CO3	0	0	0	0	0	0	0	0	2	2	0	0	1	0	2
CO4	0	0	0	0	0	0	0	0	2	2	0	2	1	0	2
CO5	0	2	1	1	2	0	2	0	2	3	0	2	1	0	2

CE1501	STRUCTURAL ANALYSIS – II	L	Т	Ρ	С					
		3	0	0	3					
OBJECTIVES										
 To lear 	n the method of drawing influence lines and its uses in various application	ions	like	bea	ms					
and pla	ne trusses.									
To anal	yse the arches and suspension bridges.									
 Also to 	learn Plastic analysis of beams and rigid frames.				1					
UNIT I	INFLUENCE LINES FOR DETERMINATE BEAMS				9					
Influence lines	for reactions in statically determinate beams - Influence lines for she	ear f	orce							
and bending i	moment – Calculation of critical stress resultants due to concentra	ted	and	6	01					
distributed mov	ving loads - absolute maximum bending moment - influence lines for	mer	nber							
forces in pin joi	nted plane frames.									
UNIT II INFLUENCE LINES FOR INDETERMINATE BEAMS										
Muller Breslau	's principle- Influence line for Shearing force, Bending Moment and	sup	port							
reaction compo	onents of propped cantilever, continuous beams (Redundancy restricted	to c	one),	С	02					
and fixed beam	IS.									
UNIT III	ARCHES				9					
Arches - Types	s of arches – Analysis of three hinged, two hinged and fixed arches - F	Paral	bolic							
and circular are	ches – Settlement and temperature effects.				03					
UNIT IV	CABLES AND SUSPENSION BRIDGES				9					
Equilibrium of	cable – length of cable - anchorage of suspension cables – stiffening	girde	ers -							
cables with thre	ee hinged stiffening girders – Influence lines for three hinged stiffening gi	irder	S.		04					
UNIT V	PLASTIC ANALYSIS				9					
Plastic theory	- Statically indeterminate structures - Plastic moment of resistance -	- Pla	astic							
modulus – Sha	pe factor – Load factor – Plastic hinge and mechanism – collapse load	1 - S	tatic							
and kinematic	methods – Upper and lower bound theorems - Plastic analysis of indete	ermi	nate	C	,05					
beams and frai	nes.									
-	TOTAL	.:4	5 PE	RIO	DS					
L										

- Bhavikatti,S.S, Structural Analysis,Vol.1 & 2, Vikas Publishing House Pvt.Ltd.,New Delhi 4, 2014.
- 2. Punmia.B.C, Ashok Kumar Jain and Arun Kumar Jain, Theory of structures, Laxmi, Publications, 2004.
- 3. Vazrani.V.N and Ratwani,M.M, Analysis of Structures, Vol.II, Khanna Publishers, 2015.

- 1. Negi.L.S and Jangid R.S., Structural Analysis, Tata McGraw-Hill Publishers, 2004.
- 2. Reddy C.S., Basic Structural Analysis, Tata McGraw Hill Publishing Co.Ltd.2002.
- 3. Gambhir.M.L., Fundamentals of Structural Mechanics and Analysis, PHIL earning Pvt. Ltd., 2011.
- 4. Prakash Rao D.S., Structural Analysis, Universities Press, 1996.

COUR	SE OU	FCOM	ES bo cor		tudon	to will	book	la ta							
Opon	compieu		ne cot	irse, s	tuaen	ts will	De al	ne to							
CO1	To uno	derstar	nd the	e met	hod o	f drav	wing i	nflue	nce lii	nes an	id its ι	uses ir	various	applica	tions in
001	statica	lly dete	ermina	ate be	ams	and p	in join	ted p	lane f	rames					
CO 2	To uno	derstar	nd the	e met	hod o	of drav	wing i	nfluei	nce lii	nes ar	id its ι	uses ir	various	applica	tions in
02	statica	lly inde	etermi	nate l	beam	S									
CO3	To und	derstar	nd the	vario	us for	ms of	arche	es and	d the i	nethoo	ds of a	nalysis	of the ty	pes of a	rches
	To hav	ve the	know	ledge	on a	advan	ced r	netho	ds of	analys	sis of	structu	res inclu	iding cal	ole and
CO4	suspension bridges														
CO5	O5 To analyse and design various indeterminate beams and frames by plastic analysis														
				N	IAPP	ING (OF CO)s WI	TH P	Os ANI	D PSO:	5			
													PROG	RAM SPI	ECIFIC
COa				PRO	GRA	ΜΟ	TCO	MES	(POs)					'OMES (PSO _s)
COS															1505)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	2	1	1	3	2	-	2	3	2	2
CO2	3	3	3	2	2	2	1	1	3	2	-	2	3	2	2
CO3	3	3	3	2	2	2	1	1	3	2	-	2	3	2	2
CO4	3	3	3	2	2	2	1	1	3	2	-	2	3	2	2
CO5	3	3	3	2	2	2	1	1	3	2	-	2	3	2	2

CE1502	GEOTECHNICAL ENGINEERING II	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
🛠 To imp	art knowledge to plan and execute a detail site investigation progra	mm	e, to	se	ect
geotech	nnical design parameters and type of foundations. Also, to familiarize t	the s	stude	ents	for
the geo	technical design of different type of foundations and retaining walls.				
UNIT I	SITE INVESTIGATION AND SELECTION OF FOUNDATION				9
Scope and ob	jectives – Methods of exploration – Auguring and boring – Wash bo	ring	and		
rotary drilling	 Depth and spacing of bore holes – Soil samples – Representation 	tive	and		
undisturbed -	Sampling methods – Split spoon sampler, Thin wall sampler, Stational	ry pi	ston		-01
sampler – Pen	etration tests (SPT and SCPT) – Data interpretation - Strength parame	ters	and		,UI
Evaluation of L	iquefaction potential - Selection of foundation based on soil condition-	Bore	e log		
report.					
UNIT II	SHALLOW FOUNDATION				9
Introduction -	Location and depth of foundation - Codal provisions - Bearing cap	oacit	y of		
shallow founda	tion on homogeneous deposits – Terzaghi's formula and BIS formula –	- Fac	ctors		
affecting bearing	ng capacity – Bearing capacity from in-situ tests (SPT, SCPT and plate	e loa	d) –		
Allowable bea	ring pressure – Seismic considerations in bearing capacity ev	alua	tion.	С	;02
Determination	of Settlement of foundations on granular and clay deposits - Te	otal	and		
differential sett	lement – Allowable settlements – Codal provision – Methods of minimiz	zing	total		
and differential	settlements.				
UNIT III	FOOTINGS AND RAFTS				9
Types of Isolat	ed footing, Combined footing, Mat foundation – Contact pressure and se	ettler	nent		
distribution – P	roportioning of foundations for conventional rigid behaviour – Minimum of	dept	h for	C	03
rigid behaviou	r – Applications – Floating foundation – Special foundations – Seisn	nic f	orce		00
consideration -	- Codal provision				
UNIT IV	DEEP FOUNDATION				9
Deep foundation	on- Basics of Caisson and Well Foundation-Types of piles and their fur	nctio	ns –		
Factors influer	ncing the selection of pile - Carrying capacity of single pile in gran	ular	and		
cohesive soil -	- Static formula – Dynamic formulae (Engineering news and Hiley's) –	Cap	acity		
from insitu tes	ts (SPT, SCPT) – Negative skin friction – Uplift capacity- Group cap	pacit	y by	С	;04
different metho	ods (Feld's rule, Converse – Labarre formula and block failure crit	erio	n) –		
Settlement of	pile groups – Interpretation of pile load test (routine test only), Under	rea	med		
piles – Capacit	y under compression and uplift – Codal provision.				
UNIT V	RETAINING WALLS				9
Plastic equilibr	ium in soils – Active and passive states – Rankine's theory – Cohesion	less	and		
cohesive soil -	- Coulomb's wedge theory – Condition for critical failure plane – Earth	pres	sure	C	:05
on retaining wa	alls of simple configurations – Culmann Graphical method – Pressure on	the	wall		
due to line load	I – Stability analysis of retaining walls – Codal provision.				
	ΤΟΤΑΙ	.:4	5 PE	RIO	DS

- 1. Murthy, V.N.S., "Soil Mechanics and Foundation Engineering", CBS Publishers and Distributers Ltd., New Delhi, 2015.
- 2. Gopal Ranjan and Rao A.S.R. "Basic and Applied soil mechanics", New Age International

(P) Ltd, New Delhi,2006.

3. Punmia, B.C., "Soil Mechanics and Foundations", Laxmi Publications Pvt. Ltd. New Delhi, 16th Edition 2017.

REFE	RENCE	BOOI	KS												
1.	Aro	ra, K.I	R., "S	Soil N	lecha	inics	and	Foun	datior	n Engi	neerin	g", St	andard	Publishe	rs and
	Dist	ributor	s, Nev	w Del	hi, 7th	n Editi	on, 20	017 (F	Reprin	t).					
2.	Das	, B.M.	"Prin	ciples	of Fo	ounda	ition E	Engin	eering	ı" (Eigt	h editi	on), Tl	hompsor	n Asia Pv	/t. Ltd.,
	Sing	gapore	, 2013	3.											
3.	Kan	iraj, S.	R. "D	esign	aids i	in Soil	Mec	hanics	s and	Found	ation E	Engine	ering", Ta	ata McG	raw Hill
	pub	lishing	comp	any L	.td., N	lew D	elhi, 2	2002.							
4.	Var	ghese,	P.C.,	"Four	ndatio	n Eng	jineer	ing", I	Prenti	ce Hal	l of Ind	dia Priv	vate Limi	ted, Nev	v Delhi,
	200	5.													
5.	Joseph E bowles, "Foundation Analysis and design", McGraw Hill Education, 5th Edition,														
	28th August 2015.														
6.	Relevant IS Codes														
COUR	JRSE OUTCOMES														
Upon completion of the course, students will be															
CO1	Planning and executing a detailed site investigation to select geotechnical design parameters														
COI	and type of foundation														
CO2	Gaining knowledge on bearing capacity of soil and testing methods for settlement in shallow														
002	founda	tion													
CO3	Desigr	ning co	mbine	ed foo	otings	and r	aft fo	undat	ions,	its con	nponer	nt or pi	rocess a	s per the	e needs
005	and sp	ecifica	itions												
CO4	Desigr	ning de	eep fo	ounda	tions,	dete	rminii	ng the	e load	d carry	/ing ca	apacity	and se	ttlement	of pile
0.04	founda	tion													
CO5	Detern	nining	earth	press	ure o	n reta	ining	walls	and a	nalysis	s for st	ability			
				N	IAPP	ING ()F CC)s WI	TH P	Os ANI	D PSO	5			
				DDO		MOL	TCO	MES					PROG	RAM SPI	ECIFIC
COs				INU	UNA		100	WIE6	(1 (13)				OUTC	COMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	3	3	3	1	2	1	1	1	1	2	3	2	1	3
CO2	3	3	3	3	1	2	1	1	1	1	2	3	2	1	3
CO3	3	3	3	3	1	2	1	1	1	1	2	3	2	1	3
CO4	3	3	3	3	1	2	1	1	1	1	2	3	2	1	3
CO5	3	3	3	3	1	2	1	1	1	1	2	3	2	1	3

CE1503	RAILWAYS, AIRPORTS AND HARBOUR ENGINEERING	L	Т	Ρ	С						
		3	0	0	3						
OBJECTIVES											
 To intro 	duce the students about planning, design, construction and maintenance	e an	d des	sigr	۱						
principle	es of Railways, Airport and Harbour.										
UNIT I	RAILWAY PLANNING				10						
Elements of pe	rmanent way – Rails, Sleepers, Ballast, rail fixtures and fastenings, Sele	ctio	n of								
gauges - Trac	k Stress, coning of wheels, creep in rails, defects in rails – Route a	lignr	nent	6	<u>`01</u>						
surveys, conventional and modern methodsGeometric design of railway, gradient, super											
elevation, widening of gauge on curves- Level Crossings.											
UNIT II	RAILWAY CONSTRUCTION AND MAINTENANCE				8						
Earthwork – St	abilization of track on poor soil - Tunneling Methods, drainage and ventil	atio	n —								
Calculation of I	Materials required for track laying - Construction and maintenance of trac	cks -	-	C	:02						
Signalling - Ra	ilway Station and yards and passenger amenities										
UNIT III	AIRPORT PLANNING				9						
Air transport characteristics-airport classification-air port planning: objectives, components,											
layout charact	eristics, socio-economic characteristics of the Catchment area, air	port	site	6	:03						
selection-Orier	tation of Runways and correction factors as ICAO stipulations, typica	ıl Ai	rport		/00						
Layouts, parkir	ng and Circulation Area.										
UNIT IV	AIRPORT DESIGN				9						
Runway Desig	n: Orientation, Wind Rose Diagram, Problems on basic and Actual Leng	th,									
Geometric Des	sign, Configuration and Pavement Design Principles - Elements of	Тах	iway	C	:04						
Design– Airpor	t Zones – Passenger Facilities and Services – Runway and Taxiway Ma	rkinę	gs.								
UNIT V	HARBOUR ENGINEERING				9						
Definition of B	asic Terms: Harbour, Port, Satellite Port, Docks, Waves and Tides –	Plan	ning								
and Design o	f Harbours: Requirements, Classification, Location and Design Prin	ciple	es –								
Harbour Layou	it and Terminal Facilities – Coastal Structures: Piers, Break waters, V	Vhar	ves,	6	05						
Jetties, Quays, Spring Fenders, Dolphins and Floating Landing Stage – Inland Water Transport											
- Wave action	on Coastal Structures and Coastal Protection Works - Environmental	con	cern								
of Port Operati	ons –Coastal Regulation Zone, 2011										
	TOTAL : 45 PERIC										

- 1. Subramanian K.P., Highways, Railways, Airport and Harbour Engineering, Scitech Publications (India), Chennai, 2010
- 2. C.Venkatramaiah., Transportation Engineering-Vol.2 Railways, Airports, Docks and Harbours, Bridges and Tunnels.,Universities Press (India) Private Limited, Hyderabad, 2015.
- 3. Vazirani.V.N and Chandola.S.P, "Transportation Engineering-Vol.II", Khanna Publishers,New Delhi, 2015.
- 4. Mundrey J S, Railway Track Engineering, McGraw Hill Education (India) Private Ltd, NewDelhi, 2013.

- 1. Saxena Subhash, C.and Satyapal Arora, ACourse in Railway Engineering, Dhanapat Rai and Sons, Delhi, 1998
- 2. Khanna.S.K. Arora.M.G and Jain.S.S, Airport Planning and Design, Nemachand and Bros, Roorkee, 1994

COUR	RSE OU	гсом	ES													
Upon	completi	ion of t	he cou	ırse, s	tuden	ts will	l be al	ole to								
CO1	Under	stand t	he co	ncept	s and	elem	ents i	n Plai	nning,	Desig	n and	constr	uction of			
	Railwa	iys.														
CO2	Select other i	appro nfrastr	priate ucture	meth es	ods fo	or con	struct	tion ai	nd ma	untena	nce of	Railwa	ay tracks	and		
CO3	Under	Understand the concepts and elements in Planning and selection of site for Airport.														
CO4	Desigr	Design the Runway length and evaluate the orientation of runways														
CO5	Unders	Understand the terminologies, infrastructures in Harbour Engineering and Coastal														
	regulations.															
MAPPING OF COs WITH POs AND PSOs																
				PRC	GRA	мот	TCO	MES	(POs)				PROGI	RAM SPI	ECIFIC	
Cos				IRO	G M1				(1 05)				OUTC	COMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
C01	3	-	-	-	-	-	1	3	3	-	-	-	3	2	2	
CO2	-	-	3	-	2	2	-	-	-	-	-	2	3	3	3	
CO3	-	3	3	2	3	-	-	-	3	2	1	2	3	3	2	
CO4	3	3	-	2	2	2	-	3	1	2	-	2	2	2	3	
CO5	3	2	3	3	-	-	-	-	-	2	1	-	3	3	3	

CE1504	E1504 WASTEWATER ENGINEERING L T F												
		3	0	0	3								
OBJECTIVES													
The observed	pjectives of this course is to help students develop the ability	to a	apply	ba	sic								
underst	anding of physical, chemical, and biological phenomena for suc	cess	ful	desi	gn,								
operatio	on and maintenance of sewage treatment plants.												
UNIT I	PLANNING AND DESIGN OF SEWERAGE SYSTEMS				9								
Characteristics	and composition of sewage - population equivalent -Sanitary sewa	age	flow										
estimation – S	ewer materials - Hydraulics of flow in sanitary sewers - Sewer design	– S	torm										
drainage -Stori	m runoff estimation – sewer appurtenances – corrosion in sewers – pr	ever	ntion	С	01								
and control – sewage pumping-drainage in buildings-plumbing systems for drainage - Rain													
Water harvesting.													
UNIT II	PRIMARY TREATMENT OF SEWAGE				9								
Objectives – l	Jnit Operations and Processes – Selection of treatment processes -	- 01	nsite										
sanitation - Se	ptic tank- Grey water harvesting – Primary treatment – Principles, funct	ions	and	C	02								
design of sew	age treatment units - screens - grit chamber-primary sedimentation	tanl	<s td="" –<=""><td></td><td>02</td></s>		02								
Construction, C	Operation and Maintenance aspects.												
UNIT III	SECONDARY TREATMENT OF SEWAGE				9								
Objectives - S	Selection of Treatment Methods – Principles, Functions, - Activated	Slu	ıdge										
Process and E	xtended aeration systems -Trickling filters- Sequencing Batch Reactor	(SB	R) –										
Membrane Bio	preactor - UASB – Waste Stabilization Ponds – Other treatment me	etho	ds -	С	03								
Reclamation a	nd Reuse of sewage - Recent Advances in Sewage Treatment – Cons	struc	tion,										
Operation and	Maintenance aspects.												
UNIT IV	DISPOSAL OF SEWAGE				9								
Standards for I	Disposal - Methods – dilution – Mass balance principle - Self purification	of r	iver-										
Oxygen sag cu	Irve – deoxygenation and reaeration - Streeter–Phelps model - Land di	spos	sal –	С	04								
Sewage farmin	g – sodium hazards.												
UNIT V	SLUDGE TREATMENT AND DISPOSAL				9								
Objectives - S	Sludge characterization – Thickening - Design of gravity thickener-	Slu	ıdge										
digestion - Standard rate and High rate digester design- Biogas recovery - Sludge													
Conditioning and Dewatering – Sludge drying beds- ultimate residue disposal – recent													
advances.													
	ΤΟΤΑΙ	.:4	5 PE	RIO	DS								

- 1. Garg, S.K., Environmental Engineering Vol. II, Khanna Publishers, New Delhi, 2015.
- 2. Duggal K.N., "Elements of Environmental Engineering" S.Chand and Co. Ltd., New Delhi, 2014.
- 3. Punmia, B.C., Jain, A.K., and Jain.A.K., Environmental Engineering, Vol.II, Laxmi Publications, 2010

- 1. Manual on Sewerage and Sewage Treatment Systems Part A,B and C, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 2013.
- 2. Metcalf and Eddy- Wastewater Engineering-Treatment and Reuse, Tata Mc.Graw-Hill

Company, New Delhi, 2010.

3. Syed R. Qasim "Wastewater Treatment Plants", CRC Press, Washington D.C.,2010

4. Gray N.F, "Water Technology", Elsevier India Pvt. Ltd., New Delhi, 2006

COUR	SE OU	ГСОМ	ES														
Upon o	completi	ion of t	he cou	ırse, s	tuden	ts will	be at	ole to									
CO1	Unders	tand or	the c	haract	eristic	s and	compo	osition	of sev	wage, a	bility t	o estim	ate sewag	ge genera	tion and		
COI	design	sewer s	system	inclu	ding se	ewage	pump	ing sta	ations								
CO2	Select	type of	treatn	nent sy	ystem	and al	ole to	perfor	m bas	ic desig	gn of th	ne unit	operation	s that are	used in		
02	sewage	treatm	ent. kr	nowled	lge of	septic	tank c	lesign									
CO3	Gain knowledge of selection of treatment process and biological treatment process																
CO4	Acquire knowledge of advance treatment technology and reuse of sewage																
CO5	CO5 Understand the, self-purification of streams and sludge and septage disposal methods.																
MAPPING OF COs WITH POs AND PSOs																	
				PRO		ΜΟΓ	TCO	MES	(POs)				PROGE	RAM SPECIFIC			
COs				INU	UNA.		100		(1 (1))				OUTC	COMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
C01	1	1	2	2	-	1	1	3	2	3	3	1	-	3	3		
CO2	3	-	3	2	2	3	-	3	2	3	-	2	3	3	3		
CO3	3	2	3	2	-	2	-	1	2	3	-	2	3	2	3		
CO4	2	-	3	2	3	-	-	1	2	3	2	3	3	2	3		
CO5	2	3	3	2	2	-	-	3	3	3	2	3	3	3	3		

CE1505	DESIGN OF REINFORCED CONCRETE ELEMENTS L T	Ρ	С						
	3 0	0	3						
OBJECTIVES									
 To intro 	oduce the different types of philosophies related to design of basic structural e	lem	ients						
such a	s slab, beam, column and footing which form part of any structural syst	эm	with						
referen	ce to Indian standard code of practice.								
UNIT I	DESIGN CONCEPTS AND DESIGN OF BEAMS FOR FLEXURE		9						
Design concep	ots - Concept of elastic method, ultimate load method and limit state method	-							
Advantages of Limit State method over other methods – Design of rectangular beam section by									
working stress method - Limit state method of design of singly reinforced, doubly reinforced									
and flanged be	ams - use of design aids for flexure								
UNIT II	LIMIT STATE DESIGN OF BEAMS FOR SHEAR, TORSION AND		9						
	SERVICEABILITY								
Limit state des	sign of RC beams for shear and torsion - Design of RC beams for combine	k							
bending, shear	and torsion – Use of design aids - Design requirement for bond and anchorage	Э	<u></u>						
as per IS coo	de - Detailing of reinforcement - Concept of Serviceability - Serviceabilit	/	002						
requirements for	or deflection.								
UNIT III	LIMIT STATE DESIGN OF SLABS AND STAIRCASE		9						
Behaviour of o	ne way and two way slabs - Design of one way simply supported, cantilever and	k							
Continuous sl	abs - Design of two-way slabs for various edge conditions - Torsio	ו	CO2						
reinforcement	at corners - Design of flat slabs - Types of staircases - Design of dog-legge	k	005						
staircase.									
UNIT IV	LIMIT STATE DESIGN OF COLUMNS		9						
Types of colum	nns – Axially Loaded columns – Design of short Rectangular, Square and Circula	r							
columns –Desi	ign of Slender columns- Design for Uniaxial and Biaxial bending using Columi	۱	CO4						
Curves									
UNIT V	LIMIT STATE DESIGN OF FOOTINGS		9						
Concepts of P	roportioning footings and foundations based on soil properties-Design of wa	I							
footing - Desi	ign of axially and eccentrically loaded Square, Rectangular pad and slope	Ł	CO5						
footings – Desi	gn of Combined Rectangular footing for two columns only.								
TOTAL : 45 PERIC									

- B.C. Punmia. Ashok K. Jain and Arun K. Jain, Limit State design of Reinforced Concrete, Laxmi Publications (P) Ltd., New Delhi, 2016.
- 2. Gambhir M L, Fundamentals of Structural Steel Design, McGraw Hill Education India Pvt Limited, 2017

- Unnikrishna Pillai and Devdas Menon, Reinforced Concrete Design (Third Edition), Tata Mc Graw Hill Publishing Company Ltd., New Delhi, 3rd Edition, 2017.
- 2. N. Subramanian, Design of Reinforced Concrete Structures, Oxford University Press, New Delhi, 2014.
- P.C. Varghese, Limit State Design of Reinforced Concrete, Prentice Hall of India, Pvt. Ltd., New Delhi, Second Edition, 2008.

4. S.N. Sinha, Reinforced Concrete Design, Tata McGraw-Hill, New Delhi, 2002

COURSE OUTCOMES															
Upon o	completi	ion of t	he cou	ırse, s	tuden	ts will	be ab	ole to							
CO1	Explain	n the va	rious o	lesign	conce	pts an	d desi	gn a b	eam u	nder fle	exure an	nd draw	the reinf	orcement	details.
CO2	Design services	the bea ability 1	am und require	ler she ements	ear and s for R	l torsio C stru	on, Ca ctural	lculate eleme	e the a ents.	nchorag	ge and	develop	oment leng	gth and cl	neck the
CO3	Design a RC slab and staircase and draw the reinforcement details.														
CO4	Design columns for axial, uniaxial and biaxial eccentric loadings.														
CO5	Design of footing by limit state method.														
MAPPING OF COs WITH POs AND PSOs															
COs	PROGRAM OUTCOMES (POs) PROGRAM SPECIFIC OUTCOMES (PSOs) OUTCOMES (PSOs)												ECIFIC PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	-	3	1	1	3	3	3	3	3	3	3
CO2	3	3	2	3	-	3	1	1	3	3	3	3	3	3	3
CO3	3	3	2	3	-	3	1	1	3	3	3	3	3	3	3
CO4	3	3	2	3	-	3	1	1	3	3	3	3	3	3	3
CO5	3	3	2	3	-	3	1	1	3	3	3	3	3	3	3

CE1507	7	ENVIRONMENTAL ENGINEERING LABORATORY	L	Т	Ρ	С						
			0	0	4	2						
OBJEC	TIVES											
* -	This su	bject includes the list of experiments to be conducted for characterization	on o	f wa	ter a	and						
r	nunicip vrocedi	al sewage. At the end of the course, the student is expected to be	e av	vare	OT	the						
1	Joccut	are for quantifying quanty parameters for water and sewage.										
EXERC	ISES					L						
1.	Deter	mination of pH by using pH Meter										
2.	Deter	mination of Turbidity using Turbidity Meter										
3.	Deter	mination of Conductivity										
4.	Deter	mination of Total Hardness										
5.	Deter	mination of Alkalinity and Acidity										
6.	Deter	mination of Chlorides										
7.	Deter	Determination of Sulphates										
8.	Deter	mination of Iron and fluoride										
9.	Deter	mination of Available Chlorine in bleaching powder										
10.	Deter	mination of Residual chlorine										
11.	Deter	mination of MPN index of given water sample										
12.	Coag	ulation and Precipitation process for treating wastewater										
13.	Deter	mination of Phosphates										
14.	Deter	mination of suspended, Volatile, Fixed and Settleable solids in wastewat	er									
15.	Deter	mination of Dissolved Oxygen for the given sample										
16.	Deter	mination Chemical Oxygen Demand in Wastewater										
17.	Deter	mination of BOD for the given sample										
18.	Deter	mination of SVI of Biological sludge and microscopic examination										
19.	Dete	rmination of Concentration of Metal ions using Flame Photometer (Stud	y)									
20.	Deter	mination of various elements using Atomic Absorption Spectroscopy (St	udy)									
		TOTAL	. : 6	0 PE	RIO	DS						
KEFER	ENCE	BUOK2										

1.	Manual on Sewerage and Sewage Treatment Systems Part A,B and C, CPHEEO, Ministry
	of Urban Development, Government of India, New Delhi, 2013.
2.	Metcalf and Eddy- Wastewater Engineering-Treatment and Reuse, Tata Mc.Graw-Hill
	Company, New Delhi, 2010.
3.	Syed R. Qasim "Wastewater Treatment Plants", CRC Press, Washington D.C.,2010
4.	Gray N.F, "Water Technology", Elsevier India Pvt. Ltd., New Delhi, 2006

Garg, S.K., Environmental Engineering Vol. II, Khanna Publishers, New Delhi, 2015 LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS 5.

SI.No	Description of Equipment	Quantity
1	Turbidity Meter	1
2	Flame Photometer	1

	3	COD Digeter												1			
	4					J	lar Te	st Ap	paratu	JS				2			
	5					Dis	solved	d Oxy	gen N	leter				1			
	6				At	omic	Absor	rption	Spec	trosco	ру			1			
	7						BO) Ana	lyser					1			
	8			lon S	Selecti	ve El	ectroc	le-Flu	oride,	Calciu	um, Nit	rate		1			
	9					U٧	/-Spec	ctroph	notom	eter				1			
	10			G	as Cl	hromo	otogra	iphy N	IETEL	_ Mode	el:9100			1			
COUR	COURSE OUTCOMES																
Upon o	Upon completion of the course, students will be																
CO1	Quantify the pollutant concentration in water and wastewater																
CO2	Suggest the type of treatment required and amount of dosage required for the treatment																
CO3	Examine the conditions for the growth of micro-organisms																
CO4	Suggest the type of treatment required to reduce e-coli in water																
CO5	Compare the analysis of treated water among different treatments																
				N	IAPP	ING (OF CO)s WI	TH P	Os AN	D PSO	5					
				DDO			TOO						PROG	RAM SPI	ECIFIC		
COs				PRO	JGRA	MOU	JTCO	MES	(POs)				OUTO	COMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	-	3	-	3	-	-	1	-	-	1	-	-	3	-	2		
CO2	-	1	-	1	-	-	3	-	-	1	-	-	1	-	3		
CO3	-	3	-	3	-	-	1	-	-	1	-	-	3	-	3		
CO4	-	1	-	1	-	-	3	-	-	1	-	-	1	-	3		
CO5	-	1	-	1	-	-	1	-	-	1	-	-	1	-	3		

CE150	8	SOIL MECHANICS LABORATORY	L	Т	Ρ	С
			0	0	4	2
OBJEC	TIVES					
*	To deve	elop skills for testing the index and engineering properties of soil				
*	To char	acterize and classify the soil based on its properties				
EXERC						
1. DETI a. S	ERMIN/ Specific	ATION OF INDEX PROPERTIES gravity of soil				
b. G	Grain siz	e distribution – Sieve analysis				
c. G	Grain siz	e distribution - Hydrometer analysis				
d. L	iquid lin.	nit and Plastic limit tests				
e. S	Shrinkag	e limit and Differential free swell tests				
2. DET a. F	ERMIN/	ATION OF INSITU DENSITY AND COMPACTION CHARACTERISTICS nsity Test (Sand replacement method and core cutter method)	5			
b. D	Determir	ation of moisture – density relationship using standard Proctor compacti	on te	est.		
c. D	Determin	ation of relative density (Demonstration only)				
3. DET a. P	ERMIN/ Permeat	ATION OF ENGINEERING PROPERTIES ility determination (constant head and falling head methods)				
b. C	One dim	ensional consolidation test (Determination of Co-efficient of consolidation	n onl	y)		
c. D	Direct sh	ear test in cohesionless soil				
d. L	Jnconfin	ed compression test in cohesive soil				
e. L	aborato	ry vane shear test in cohesive soil				
f. Tr	ri-axial o	compression test in cohesionless soil (Demonstration only)				
g. C	California	a Bearing Ratio Test				
		TOTAL	. : 4	5 PE	RIO	DS
·						

- 1. Soil Engineering Laboratory Instruction Manual" published by Engineering College Cooperative Society, Anna University, Chennai, 2010.
- 2. Saibaba Reddy, E. Ramasastri, K. "Measurement of Engineering Properties of Soils", New age International (P) limited publishers, New Delhi, 2008.
- 3. Lambe T.W., "Soil Testing for Engineers", John Wiley and Sons, New York, 1951. Digitized 2008.
- 4. IS Code of Practice (2720) Relevant Parts, as amended from time to time, Bureau of Indian Standards, New Delhi.
- 5. Braja M.Das., "Soil Mechanics: Laboratory Manual", Oxford University Press, eighth edition, 2012.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

	SI.No				D	escri	ption	of Ec	quipm	nent			Q	uantity	
	1						Densit	y Bot	tles					3	
	2						Si	eves						2 sets	
	3						Hydr	omet	er					2 sets	
	4				Liqu	id and	d Plas	tic lin	nit app	paratus	6			2 sets	_
	5				Ş	Shrink	age l	imit a	ppara	tus				3 sets	_
	6				Pro	octor (Comp	actior	n appa	aratus				2 sets	_
	7		UTM of minimum of 20kN capacity 1												_
	8		Direct Shear apparatus 1												_
	9		Thermometer 2												_
	10			5	and re	epiace	ement	meth	lod ac		ries			2	_
	12						er me		acces	sones				<u> </u>	-
	12			т	hroo	Cond	Cons		ion to	ius et dovi	ico			1	-
	13			1		Gariy Polativ					lice			1	-
	14							ar an	apparati					1	-
	16				Weial	hina n	nachir	ne – 1	$\frac{0 \text{ka}}{0 \text{ka}}$	canaci	tv			1	
	17				Weid	nhina	mach	ine –	1ka c	apacity	/			1	_
	18		Сс	onstar	t Hea	ad Per	meat	oilitv a	ppara	itus ac	, cessoi	ies		1 set	-
	19		F	alling	Head	l Pern	neabi	lity ap	parat	us acc	essorie	es		1 set	
	20		Calif	ornia	Beari	ng Ra	tio Te	esting	Mach	nine & a	access	sories		1 set	
COUR	SE OUT	ГСОМ	IES										·		
Upon o	completi	on of t	the cou	ırse, s	tuden	ts will	be								
CO1	Condu	cting t	ests to	o dete	rmine	e the i	ndex	prope	rties o	of soils	(coars	se and	fine)		
CO2	Classif	ying s	oil bas	sed or	n inde	x pro	pertie	s of s	oils (c	oarse	and fir	ne)			
CO3	Determ	nining	the in	situ de	ensity	and	compa	action	chara	acteris	tics				
CO4	Condu	cting t	ests to	o dete	ermine	e the c	compr	essib	ility, p	ermea	bility a	nd she	ar streng	gth of so	ils, and
CO5	Charac	cterizir	ng the	soil b	ased	on its	prop	erties							
				N	IAPP	ING (OF CO)s WI	TH PO	Os ANI	D PSO	s			
				PPO		ΜΟΓ	TCO	MFS	(P ∩e)				PROG	RAM SPI	ECIFIC
COs				INU	UNA		100	WIE6	(1 (15)				OUTO	COMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	3	1	-	-	-	-	-	1	2	2	-	3
CO2	3	3	3 1 3 - 1 - 1 - 3 2									2	-	3	
CO3	3	1	1	3	1	-	-	-	-	-	1	2	2	-	3
CO4	3	1	1	3	1	-	-	-	-	-	1	2	2	-	3
CO5	3	3	1	3	-	1	-	-	-	1	-	3	2	-	3
	1		1	I		I			I	I	1			1	1

CE1601	IRRIGATION ENGINEERING	L	Τ	Ρ	С		
		3	0	0	3		
OBJECTIVES							
To unde	erstand the needs and mode of irrigation.						
To stud	y about minimizing water losses and on farm development works.						
 To lear 	n the concepts involved in elementary hydraulic design of different str	ructu	ures	and	d its		
mainter	nance.						
To learn about Irrigation water management.							
UNIT I PRINCIPLES OF IRRIGATION							
Need for irriga	tion – Advantages and ill effects – Development of irrigation – Nation	al W	/ater				
Policy – Tam	Il Nadu scenario - Physical properties of soil that influence soil	mois	sture				
characteristics	- Concept of soil water potential and its components - Retention of	wate	er in	C	CO1		
solis - Concept	of available water – Movement of water into and within the soils – Meas	urer	nent				
of soil moisture							
UNIT II	CROP WATER REQUIREMENT				9		
Necessity and	importance– Crop and crop seasons in India –Duty, Delta, Base Period–	- Fac	ctors				
affecting Duty-	Irrigation efficiencies- Consumptive use of water-Irrigation requirements	of c	rops	C	02		
- Standards for	irrigation water						
UNIT III	DIVERSION AND IMPOUNDING STRUCTURES				9		
Head works –V	Veirs and Barrages – Types of impounding structures - Factors affecting,	loca	ation				
of dams -Forc	es on a dam -Design of Gravity dams; Earth dams, Arch dams – Sp	illwa	ays -	C	03		
Energy dissipa	ters						
UNIT IV	CANAL IRRIGATION				9		
Classification of	of canals- Alignment of canals – Design of irrigation canals- Regime th	neor	ies -				
Canal Head wo	orks – Canal regulators - Canal drops – Cross drainage works – Canal	Out	tlets,				
Escapes -Lini	ing and maintenance of canals – Other methods of Irrigation:	Surf	ace,	C	:04		
Subsurface – N	lerits and Demerits.						
UNIT V	IRRIGATION WATER MANAGEMENT				9		
Modernization	techniques - Rehabilitation - Command Area Development - System	s of	rice				
intensification	- Water delivery systems - Participatory Irrigation Management - I	Farm	ners'	C	05		
organization ar	nd turn over – Water users' associations - Economic aspects of irrigation	•					
	TOTAL	.:4	5 PE	RIC	DS		

- 1. Sharma, R.K., and Sharma, T.K., "Irrigation Engineering", S. Chand and Company, New Delhi, 2008.
- 2. Garg, S.K., "Irrigation Engineering," Laxmi Publications, New Delhi, 2008.

- 1. Arora, K.R., "Irrigation, Water Power and Water Resources Engineering", Standard Publishers Distributors, New Delhi, 2009.
- 2. Basak, N.N., "Irrigation Engineering", Tata McGraw-Hill Publishing Co, New Delhi, 2008.
- 3. Punmia, B.C., "Irrigation and Water Power Engineering", Laxmi Publishers, New Delhi, 2008.

COUR	SE OU	тсом	ES												
Upon	comple	etion o	f the	cours	se, st	udent	ts will	l be a	ble to)					
CO1	Descri	be the	natio	nal wa	ater po	olicys	structu	ure an	id soil	plant	water o	charac	teristics		
CO2	Descr	ibe the	e basio	cs of r	equire	emen	ts and	d estin	natior	of cro	p wate	er			
CO3	Desigr	the v	arious	type	s of hy	ydraul	lic stru	ucture	inclu	des da	ims, sp	oillways	s and dis	sipaters	
CO4	Desigr	the c	ompo	nents	of irri	gatior	n cana	al inclu	udes o	canal c	lrops a	ind cro	SS		
CO5	Apply irrigation	the co on mai	ncept nagen	ts of nent	Irrigat	ion w	ater i	mana	geme	nt, wa	ter use	er asso	ociation	for partio	cipatory
				Μ	APPI	NG O	F CO	s WI1	TH PC)s ANI	D PSO	S			
	PROGRAM SPECIFIC														
				PRO	GRA	M OU	тсоі	MES	(POs)				PROG	RAM SP	ECIFIC
COs				PRC	GRA	MOU	тсоі	MES ((POs)					RAM SP OMES (I	ECIFIC PSOs)
COs	P01	PO2	PO3	PRC	PO5	M OU P06	PO7	MES ((POs) PO9	PO10	P011	PO12	PROGI OUTC PSO1	RAM SP OMES (I PSO2	ECIFIC PSOs) PSO3
COs CO1	P01 -	P02 -	P03 -	PRC PO4	PO5	M OU P06 2	PO7	MES PO8 3	(POs) PO9 -	PO10 3	P011 -	PO12	PROGI OUTC PSO1 3	RAM SP OMES (I PSO2 2	ECIFIC PSOs) PSO3
COs CO1 CO2	P01 - -	PO2 - 1	PO3 - 3	PRC PO4 2 -	PO5	M OU PO6 2 -	P07 - -	PO8 3 3	(POs) P09 - 2	PO10 3 -	P011 - 2	PO12 2 2	PROGI OUTC PSO1 3 3	RAM SP OMES (1 PS02 2 3	ECIFIC PSOs) PSO3 -
COs C01 C02 C03	P01 3	PO2 - 1 3	PO3 - 3 -	PRC PO4 2 - 3	PO5	M OU PO6 2 - 3	PO7 - -	PO8 3 3 -	(POs) PO9 - 2 -	PO10 3 - -	PO11 - 2 3	PO12 2 2 -	PROGI OUTC PSO1 3 3 3	RAM SP OMES (1 PS02 2 3 3 3	ECIFIC PSOs) - - 2
COs CO1 CO2 CO3 CO4	P01 3 3 3	PO2 - 1 3 3	PO3 - 3	PRC PO4 2 - 3 -	PO5 2 -	M OU PO6 2 - 3 3	P07 - - - -	MES (PO8 3 3 - -	(POs) PO9 - 2 - -	P010 3 - -	P011 - 2 3 3 3	P012 2 2 - -	PROGI OUTC PSO1 3 3 3 3 3	RAM SP OMES (1 PS02 2 3 3 3 3	ECIFIC PSOs) - - 2 2

CE1602	CONSTRUCTION MANAGEMENT	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
 To make 	te the students to learn about planning of construction projects, schedu	ling	proc	edu	res
and tec	hniques, cost and quality control projects and use of project informat	ion	as d	ecis	ion
making	tool.				
UNIT I	CONSTRUCTION PLANNING				9
Basic concep	ts in the development of construction plans-Choice of Technolo	gy	and		
Construction m	hethod-Defining Work Tasks- Work breakdown structure- Definition- Pre-	cede	ence	C	01
relationships a	mong activities-Estimating Activity Durations-Estimating Resource Requi	rem	ents	Ŭ	0.
for work activiti	es-coding systems.				
UNIT II	SCHEDULING PROCEDURES AND TECHNIQUES				9
Relevance of	construction schedules-Bar charts - The critical path method-Calculat	tions	s for		
critical path sc	heduling-Activity float and schedules-Presenting project schedules-Criti	cal	path		
scheduling for	Activity-on-node and with leads, Lags and Windows-Calculations for scl	hedu	uling		
with leads, la	ags and windows-Resource oriented scheduling-Scheduling with r	eso	urce	С	02
constraints an	d precedence's -Use of Advanced Scheduling Techniques-Scheduli	ing	with		
uncertain dura	tions-Crashing and time/cost tradeoffs -Improving the Scheduling pr	oces	SS –		
Introduction to	application software.				
UNIT III	COST CONTROL MONITORING AND ACCOUNTING				9
The cost conti	ol problem-The project budget-Forecasting for Activity cost control -	finar	ncial		
accounting sy	stems and cost accounts-Control of project cash flows-Schedule	con	trol-	С	03
Schedule.					
UNIT IV	QUALITY CONTROL AND SAFETY IN CONSTRUCTION				9
Quality and s	afety Concerns in Construction-Organizing for Quality and Safety-W	ork	and		
Material Speci	fications-Total Quality control-Quality control by statistical methods -S	tatis	tical	С	04
Quality contro	I with Sampling by Attributes-Statistical Quality control by Sampl	ing	and	Ŭ	•
Variables-Safe	ty in Construction.				
UNIT V	ORGANIZATION AND PROJECT INFORMATION SYSTEM				9
Types of proje	ct information-Accuracy and Use of Information-Computerized organiza	tion	and		
use of Informa	tion - Organizing information in databases-relational model of Data base	es-O	ther	C	05
conceptual Mo	dels of Databases-Centralized database Management systems-Databa	ses	and	Ŭ	05
application pro	grams-Information transfer and Flow.				
	TOTAL	. : 4	5 PE	rio	DS
TEXT BOOKS					
	are KK "Construction Droject Menogement Dispring". Osherbiling are	4.0	0	<u>.</u> –	ote
	ara, K.K. Construction Project management Planning, Scheduling an	a C	UNTRO	DI, I	ata
McG	raw Hill Publishing Co., New Delhi, 2014				

- 2. Srinath,L.S., "Pert and CPM Principles and Applications", Affiliated East West Press, 2001.
- 3. Albert Lester, Project Management, Planning and Control, 7th Edition, Butterworth-Heinemann, USA, 2017.

- 1. Chris Hendrickson and Tung Au, "Project Management for Construction Fundamentals
- 2. Concepts for Owners", Engineers, Architects and Builders, Prentice Hall, Pitsburgh, 2000.
- 3. Moder.J., Phillips. C. and Davis E, "Project Management with CPM", PERT and Precedence Diagramming, Van Nostrand Reinhold Co., 3rd Edition, 1985.
- 4. Willis., E.M., "Scheduling Construction projects", John Wiley and Sons, 1986.
- 5. Halpin,D.W., "Financial and Cost Concepts for Construction Management", John Wiley and Sons, New York, 1985.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Acquire basic concepts of construction planning.
CO2	Schedule the construction activities using critical path method.
CO3	Forecast and control the cost in a construction using various tools.
CO4	Recognize the various quality control tool required in the construction Industry.
CO5	Explain the different databases that can be maintained in a construction industry using computers.
	MAPPING OF COS WITH POS AND PSOS
	PROGRAM SPECIFIC

COs				PRO	GRA	MOU	ITCO	MES	(POs)				OUTC	OMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	3	1	-	-	-	3	-	3	2	-
CO2	-	3	3	-	3	-	1	-	-	-	3	-	3	2	3
CO3	-	3	-	-	3	-	1	-	-	-	3	-	-	2	-
CO4	3	-	-	-	3	1	1	-	-	-	2	-	-	-	-
CO5	1	2	3	-	3	1	1	-	-	-	2	-	-	3	-

CE1603	DESIGN OF STEEL STRUCTURES	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
 To intro compre 	oduce the students to limit state design of structural steel member ssive, tensile and bending loads, including connections.	rs si	ubjeo	cted	to
To prov	vide the students the tools necessary for designing structural system	IS SL	ich a	as r	oof
trusses	and gantry girders as per provisions of current code (IS 800 - 2007) of p	oracti	ce.		_
	INTRODUCTION AND ALLOWABLE STRESS DESIGN			_	9
Structural stee	el types – Mechanical Properties of structural steel- Indian structu	ral s	steel		
products- Step	s involved in the Deign Process -Steel Structural systems and their Ele	men	ts		
Type of Loads	on Structures and Load combinations- Code of practices, Loading s	tand	ards		
and Specificati	ons - Concept of Allowable Stress Method, and Limit State Design Met	hods	s for		
Steel structure	s-Relative advantages and Limitations-Strengths and Serviceability Limit	stat	es.	С	01
Allowable stres	sses as per IS 800 section 11 -Concepts of Allowable stress design for	ben	ding		
and Shear -C	heck for Elastic deflection-Calculation of moment carrying capacity –D	esig	n of		
Laterally suppo	orted Solid Hot Rolled section beams-Allowable stress deign of Angle	Ten	sion		
and Compress	ion Members and estimation of axial load carrying capacity.				
	CONNECTIONS				9
Design of Simp	ble and eccentric Bolted and welded connections - Types of failure and e	efficie	ency		
of joint – prying	action - Introduction to HSFG bolts		-	C	02
UNIT III	TENSION MEMBERS				9
Tension Memb	ers - Types of Tension members and sections –Behavior of Tension M	lemb	ers-		
modes of failu	re-Slenderness ratio- Net area – Net effective sections for Plates, An	gles	and		
Tee in tension	-Concepts of Shear Lag- Design of plate and angle tension members-o	desig	n of	С	03
built-up tensior	n Members-Connections in tension members – Use of lug angles – D)esig	n of		
tension splice.					
UNIT IV	COMPRESSION MEMBERS				9
Types of comp	ression members and sections–Behavior and types of failures-Short and	d slei	nder		
columns- Curr	ent code provisions for compression members- Effective Length, Sler	nderr	ness		
ratio –Column	formula and column curves- Design of single section and compound	Ang	gles-		
Axially Loaded	solid section Columns- Design of Built up Laced and Battened type co	olum	ns –	C	04
Design of colu	mn bases - Plate and Gusseted bases for Axially loaded columns- Sp	olices	s for		
columns.					
UNIT V	FLEXURAL MEMBERS				9
Types of steel	Beam sections- Behaviour of Beams in flexure- Codal Provisions – Clas	sifica	ation		
of cross section	ons- Flexural Strength and Lateral stability of Beams –Shear Stren	gth-\	Neb		
Buckling, Cripp	bling and defection of Beams- Design of laterally supported Beams- D)esig	n of	_	
solid rolled se	ction Beams- Design of Plated beams with cover plates - Design Str	engt	h of	C	05
Laterally unsup	ported Beams - Design of laterally unsupported rolled section Beams-	Purl	in in		
Roof Trusses-I	Design of Channel and I section Purlins.				
	ΤΟΤΑΙ	.:4	5 PE	RIO	DS
L					

1. Duggal S.K., Design of Steel Structures, Tata McGraw Hill, Publishing Co. Ltd., New Delhi,

2010

2. Bhavikatti S.S, Design of Steel Structures, Ik International Publishing House, New Delhi, 2017.

REFERENCE BOOKS

CO3

CO4

CO5

3

3

3

3

3

3

3

3

3

2

2

2

-

-

-

- 1. Gambhir M L, Fundamentals of Structural Steel Design, McGraw Hill Education India Pvt Limited, 2013
- 2. Jack C. McCormac and Stephen F Csernak, Structural Steel Design, Pearson Education Limited, 2013.
- 3. Sarwar Alam Raz, Structural Design in Steel, New Age International Publishers, 2014
- 4. Subramanian N, Design of Steel Structures, Oxford University Press, New Delhi, 2016

COURSE OUTCOMES Upon completion of the course, students will be able to CO1 Familiarize with the aspects of structural behavior of steel structures, Design philosophies CO2 Understand the design problems in bolted, riveted and welded connections CO3 Analyze and design most suitable section for tension members and tension splices CO4 Analyze and design most suitable section for compression members and column bases Undertake design problems on beams - laterally supported and unsupported. and to analyze CO5 and design roof trusses and industrial trusses MAPPING OF COs WITH POS AND PSOS **PROGRAM SPECIFIC PROGRAM OUTCOMES (POs) OUTCOMES (PSOs)** COs **PO1** PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 2 CO1 3 3 2 3 3 ---1 1 ---3 2 CO2 3 3 3 2 --2 1 3 3 ----

-

-

-

_

-

-

2

2

2

1

1

1

-

-

-

_

-

-

-

-

-

2

2

2

3

3

3

3

3

3

05	4007	CONSTRUCTION MATERIALS AND HIGHWAY ENGINEERING		-	P	~
CE	1607	LABORATORY	L		۲	C
			0	0	4	2
OBJE	CTIVES					
*	To lear	n the principles and procedures of testing Construction Materials and Hi pet hands on experience by conducting the tests and evolving inferences	ghw	ay n	nate	rials
EXER	CISES					
I.TES	rs on c	EMENT AND AGGREGATES				
a.	Consist	ency and setting time				
b.	Specific	Gravity				
с. d	Crushin	a Strength				
u.	Abrasio	n Value				
f.	Impact					
י. מ	Water A	bsorption				
9. h	Flakine	as and Elongation Indices				
	r latino					
II .TE	STS ON	FRESH CONCRETE				
a.	Slump o	cone test				
b.	Flow tal	ble				
C.	Compa	ction factor				
d.	Vee bee	e test.				
III.TES	STS ON I	IARDENED CONCRETE				
a.	Compre	ssive strength - Cube & Cylinder				
b.	Flexure	test				
C.	Modulu	s of Elasticity				
IV .TE	ESTS ON	BITUMEN				
a.	Penetra	tion				
b.	Softenir	ng Point				
С.	Ductility					
d.	Flash a	nd fire points.				
e.	Viscosit	у				
f.	Density					
V. TE	STS ON	BITUMINOUS MIXES				
a. h	Determ	nation of Binder Content				
D .	111015110					
		ΤΟΤΑ	L:6	50 PI	ERIC	DS
D	DENCE					
KEFE			<u>of</u> '		a = -	k
1.	15 40		or t	men	ess	бу
	drysi	eving.				

2. IS 2386 (Part 1 to Part 6) – 1963 – Indian Standard methods for test for aggregate for concrete

- IS 383 1970 Indian Standard specification for coarse and fine aggregates from natural sources for concrete.
- 4. Highway Materials and Pavement Testing, Nem Chand and Bros., Roorkee, Revised Fifth Edition, 2009
- 5. Methods for testing tar and bituminous materials, IS 1201–1978 to IS 1220– 1978, Bureau of Indian Standards
- 6. Methods of test for aggregates, IS 2386 1978, Bureau of Indian Standards
- Mix Design Methods Asphalt Institute Manual Series No. 2, Sixth Edition, 1997, Lexington, KY, USA.

SI.No	Description of Equipment	Quantity
1.	Concrete cube moulds	6
2.	Concrete cylinder moulds	3
3.	Concrete Prism moulds	3
4.	Sieves	2 sets
5.	Concrete Mixer	1
6.	Slump cone	3
7.	Flow table	1
8.	Vibrator	1
9.	Trovels and planers	1 set
10.	UTM – 400 kN capacity	1
11.	Vee Bee Consistometer	1
12.	Aggregate impact testing machine	1
13.	Blains Apparatus	1
14.	Los - Angeles abrasion testing machine	1
15.	Length gauge	2
16.	Thickness gauge	2
17.	Compressometer	1
18.	Marshall Stability Apparatus	1
19.	Penetrometer	1
20.	Tar Viscometer	1
21.	Ring and Ball Apparatus	1
22.	Ductility Testing Machine	1
23.	Centrifuge Extractor - (Motorized)	1
24.	Flash & Fire Point Apparatus	1
25.	Vicat apparatus	3
26.	Mortor cubes	6

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

COUR	SE OU	тсом	ES												
Upon	comple	etion o	of the	cours	se, st	udent	ts will	l be a	ble to)					
CO1	To do	tests o	n Agg	regat	es an	d cen	nent a	is per	IS co	des of	practio	ce			
CO2	To do	tests o	n fres	h con	crete	as pe	er IS c	odes	of pra	ictice					
CO3	To do	tests o	n har	denec	l as p	er IS	codes	s of pr	actice	;					
CO4	To do	tests o	n bitu	men a	as pei	r IS co	odes d	of pra	ctice						
CO5	To gai	n knov	ledge	on b	itumir	nous c	lesigr	n mix							
				Μ	APPI	NG O	F CO	s WI	ГН РС)s AN[) PSO	S			
				PRO	GRA	моц		MES	(POs)				PROG	RAM SP	ECIFIC
COs				PRC	GRA	MOU	тсоі	MES	(POs)				PROGI OUTC	RAM SP OMES (I	ECIFIC PSOs)
COs	PO1	PO2	PO3	PRO PO4	OGRA	M OU P06	PO7	MES ((POs)	PO10	P011	PO12	PROGI OUTC PSO1	RAM SP OMES (I PSO2	ECIFIC PSOs) PSO3
COs CO1	PO1 3	PO2	PO3	PRO PO4	9GRA P05	M OU P06 2	P07	MES (PO8 2	(POs) PO9	PO10	PO11 2	PO12 2	PROGI OUTC PSO1 2	RAM SP OMES (I PSO2 -	ECIFIC PSOs) PSO3 2
COs CO1 CO2	PO1 3 3	PO2 1 2	PO3 1 1	PRO PO4 1	PO5 1	M OU PO6 2 1	PO7 2 3	PO8 2 2 2	(POs) PO9 1 1	PO10 1 1	PO11 2 2	PO12 2 3	PROGI OUTC PSO1 2 3	RAM SP OMES (I PSO2 - -	ECIFIC PSOs) PSO3 2 3
COs CO1 CO2 CO3	P01 3 3 3 3	PO2 1 2 2	PO3 1 1 2	PRO PO4 1 1 1 1	PO5 1 1 1 1	M OU PO6 2 1 2	P07 2 3 3	MES PO8 2 2 2 2	(POs)	PO10 1 1 1	P011 2 2 2	PO12 2 3 3	PROGI OUTC PSO1 2 3 3	RAM SP OMES (I PSO2 - - -	ECIFIC PSOs) PSO3 2 3 3
COs CO1 CO2 CO3 CO4	P01 3 3 3 3 3 3	PO2 1 2 1 1	PO3 1 1 2 1	PRO PO4 1 1 1 1 1	PO5 1 1 1 1 1 1	M OU PO6 2 1 2 2	PO7 2 3 3 3 3	PO8 2 2 2 2 2 2	(POs) PO9 1 1 1 1	PO10 1 1 1 1 1 1	P011 2 2 2 2 2	P012 2 3 3 2	PROGI OUTC PS01 2 3 3 2	RAM SP OMES (I PSO2 - - - -	ECIFIC PSOs) PSO3 2 3 3 2 2

CE1608	IRRIGATION AND ENVIRONMENTAL ENGINEERING DRAWING	L	Т	Ρ	С
		0	0	4	2
OBJECTIVES					
 At the onviron 	end of the semester, the student shall conceive, design and draw the	ie irr	rigati	on a	and
environ		Secur	5115.		
EXERCISES					
	PART A: IRRIGATION ENGINEERING				
1. TANK C Fundament	OMPONENTS als of design - Tank surplus weir – Tank sluice with tower head - Drawir	ıgs s	how	g ing)
foundation	details, plan and elevation.				
2. IMPOUN	DING STRUCTURES			6	
Design prin	ciples - Earth dam – Profile of Gravity Dam				
3. CROSS	DRAINAGE WORKS			6	
General de	sign principles - Aqueducts – Syphon aqueduct (Type III) – Canal drop (Noto	ch Ty	vpe)	
– Drawing s	showing plan, elevation and foundation details.				
4. CANAL	REGULATION STRUCTURES			9	
General Pri	nciples - Direct Sluice - Canal regulator - Drawing showing detailed plar	ı, ele	vatio	on a	nd
foundation	details.				
	PART B: ENVIRONMENTAL ENGINEERING				
1. WATER	SUPPLY AND TREATMENT			10	
Design and	Drawing of flash mixer, clari-flocculator – Rapid sand filter – Press	sure	san	d fil	ter-
Service res	ervoirs – House service connection for water supply and drainage.				
2. SEWAG	E TREATMENT & DISPOSAL			20	
Design and	Drawing of screen chamber - Grit channel - Primary clarifier - Activated	i sluc	lge p	oroc	ess
– Sequenc	ing Batch reactor – Trickling filter – Waste stabilization ponds –Ar	naero	obic	sluc	dge
digester – S	Sludge drying beds Septic tanks and disposal arrangements.				
	ΤΟΤΑΙ	_ : 60) PE	RIO	DS
				4 :	,

- Satya Narayana Murthy Challa, "Water Resources Engineering: Principles and Practice", New Age International Publishers, New Delhi, 2002.
- 2. Garg, S.K., "Irrigation Engineering and Design of Structures", New Age International Publishers, New Delhi, 1997.
- 3. Manual on Water Supply and Treatment, CPHEEO, Government of India, New Delhi, 1999.

4.	Manual on "Sewerage and Sewage Treatment Systems- Part A, B and C" CPHEEO, Ministry
	of Urban Development, Government of India, New Delhi, 2013.

- 5. Qasim,S.R., Motley, E.M and Zhu.G. "Water works Engineering Planning, Design and Operation", Prentice Hall, New Delhi, 2009.
- 6. Qasim, S. R. "Wastewater Treatment Plants, Planning, Design & Operation", CRC Press, New York, 2010

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

	SI.No	Description of Equipment	Quantity							
		ΝΑ								
COUR	SE OUT	COMES								
Upon	completi	on of the course, students will be								
CO1	Design a	and draw tank surplus weir and tank sluice with tower head, earth d	am and its pro	ofile						
CO2	Design a	and draw -Aqueducts – Syphon aqueduct (Type III) – Canal drop (N	otch Type)							
CO3	Design a	and draw - Direct Sluice - Canal regulator								
CO4	Design	and draw flash mixer, flocculator, clarifier – Rapid sand filter – S	Service reserv	voirs –						
001	Pumping station – House service connection for water supply and drainage.									
	Design a	and draw screen chamber - Grit channel - Primary clarifier - Activate	ed sludge pro	cess –						
CO5	Aeration	Aeration tank - Trickling filter - Sludge digester - Sludge drying beds - Septic tanks and								
	disposal	disposal arrangements.								

MAPPING OF COs WITH POs AND PSOs

COs	PROGRAM OUTCOMES (POs)										PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	1	3	3	-	-	-	-	-	-	-	-	3	1	2
CO2	3	1	3	3	-	-	-	-	-	-	-	-	3	1	2
CO3	3	1	3	3	-	-	-	-	-	-	-	-	3	1	2
CO4	3	1	3	3	-	-	-	-	-	-	-	-	3	1	2
CO5	3	1	3	3	-	-	-	-	-	-	-	-	3	1	2

CE17	01	ESTIMATION, COSTING AND VALUATION ENGINEERING	L	Т	Ρ	С		
			3	0	0	3		
OBJE	CTIVES							
*	To impa	art knowledge in estimation, tender practices, contract procedures, and	valua	ation	of C	Civil		
	Engine	ering works.						
Philosophy – Purpose – Methods of estimation – Types of estimates – Approximate estimates								
- Detailed estimate - Estimation of quantities for buildings, Septic tank, roads and retaining wall								
UNIT	11	RATE ANALYSIS AND COSTING			_ 1	9		
Standard Data – Observed Data – Schedule of rates – Market rates – Assessment of Man Hours and Machineries for common civil works – Rate Analysis – Cost Estimates using Computer softwares.								
UNIT		SPECIFICATIONS, REPORTS AND TENDERS				9		
Specifi specifi Culver model auctio	ications ications - rt – Roa tenders ns.	 Detailed and general specifications – Constructions – Sources – Principles for report preparation – report on estimate of residential ds - TTT Act 2000 – Tender notices – types – tender procedures - , E-tendering-Digital signature certificates- Encrypting -Decrypting – 	Type buildi - Dra - Rev	es of ng – Ifting rerse	c	;03		
UNIT	IV	CONTRACTS			_ 1	9		
Contra labour MORT Arbitra	act – Tyj , materia TH Stand ation and	bes of contracts – Formation of contract – Contract conditions – Co al, design, construction – Drafting of contract documents based o dard bidding documents – Construction contracts – Contract pro legal requirements	ntrac n IBF oblem	rt for RD / ns –	С	:04		
UNIT	V	VALUATION				9		
Definit Valuat	tions – V tion of pla	arious types of valuations – Valuation methods – Valuation of land – B ant and machineries - Calculation of Standard rent – Mortgage – Lease	uildin	igs –	С	;05		
		ΤΟΤΑ	L:4	5 PE	RIO	DS		
TEXT	BOOKS							
1.	B.N	Dutta 'Estimating and Costing in Civil Engineering', UBS Publishers &	k Dis	tribut	ors	(P)		
	Ltd, 2	2010.						
2.	B.S.F	Patil, 'Civil Engineering Contracts and Estimates', University Press, 200	6					
REFE	RENCE	BOOKS						
1.	Hand	Book of Consolidated Data – 8/2000, Vol.1, TNPWD						
2.	Tami	l Nadu Transparencies in Tenders Act, 2000						
3.	Stan	dard Databook for analysis and rates						
4.	Stan	dard Bid Evaluation Form, Procurement of Good or Works, The World E	3ank,	Apri	199	96		
COUR	SE OUT	COMES						
Upon	complet	ion of the course, students will be able to						
	Explain	the basic concept of quantity estimation for building, roads, cana	ls ar	nd hy	/dra	ulic		
CO1	structur	es by manual and software packages						

CO2	Acquir works	Acquire the knowledge to calculate rate analysis and man-hours required for the common civil works by manual and software packages													
CO3	Develo proceo	evelop the specification for the materials used in construction, online and offline tender rocedures and tender document preparation and report preparation.													
CO4	Acquir	Acquire the knowledge of construction contracts and contract document preparation.													
CO5	Identify and lea	Identify the valuation for building, land and plant and machineries, calculation of rent, mortgage and lease.													
				Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	S			
COs		PROGRAM OUTCOMES (POs) PROGRAM SPECIFIC OUTCOMES (PSOs)											ECIFIC PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	2	1	3	2	1	2	1	2	2
CO2	3	3	3	2	3	2	2	1	2	2	2	1	2	3	2
CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	1	2
CO4	3	3	2	2	2	1	1	1	1	1	1	3	2	2	1
CO5	3	3	3	3	2	1	2	1	3	1	1	3	3	2	2

CE1	702
-----	-----

STRUCTURAL DESIGN AND DRAWING

L	Т	Ρ	С
3	0	2	4

Ohiecti	VAS		
Objecti	• To	provide the students a solid background on the principles of structural engines	ring
	on •	sign. They can able to design and detail various special structures like Retai	ning
	wa	lls Flat slabs water tanks Plate girder and Gantry girder	illing
	wa		
Course		nes (CO)	
CO1	Design	and draw retaining walls	
CO2	Design	and draw flat slabs and solid slab bridge	
CO3	Design	and draw Rcc and steel water tanks	
CO4	Design	and draw plate and Gantry girders	
CO5	Design	and draw steel Truss and Purlins	
UNIT -		RETAINING WALLS	9+6
Reinfo	rced co	ncrete Cantilever and Counter fort Retaining Walls–Horizontal Backfill	with
Surcha	arge–Des	sign of Shear Key-Design and Drawing.	
	•		
UNIT -		FLAT SLAB and BRIDGES	9+6
Design	of Flat	Slabs with and without drops by Direct Design Method of IS code- Desig	n and
Drawing	g - IRC S	pecifications and Loading – RC Solid Slab Bridge – Design and Drawing	
UNIT -		LIQUID STORAGE STRUCTURES	9+6
RCC	Water	Tanks - On ground, Elevated Circular, underground Rectangular Ta	inks–
Hemis	pherical	Bottomed Steel Water Tank –-Design and Drawing	
UNIT -	IV	GIRDERS AND CONNECTIONS	9+6
Plate	Girders	 Behaviour of Components-Deign of Welded Plate Girder-Design of Industrial C 	Santry
Girder	s – Desią	on of Eccentric Shear and Moment Resisting connections.	
			1
UNIT -	V	INDUSTRIAL STRUCTURES	9+6
Structu	ural steel	Framing - Steel Roof Trusses – Roofing Elements – Codal provisions - Design	and
Drawir	ng.		
		Total Periods:	75
DESIG	N AND D	KAWING EXEKUIJEJ FUR PRACTICAL COMPONENT	

1. Rectangular Column and Footing

2. Combined footing with Two columns

3. RCC one way &Two way Slab and beam system

4. Underground Rectangular Water Tank

5.Elevated circular water Tank

6.Built up column, column base and Foundation

7. Framed Connections and Detailing
Text Books:

1. Krishnaraju N, Structural Design and Drawing, Universities Press, 2009.

2. Punmia B.C, Ashok Kumar Jain and Arun KumarJain, Comprehensive Design of Steel Structures, Laxmi Publications Pvt. Ltd., 2003.

Reference Books:

1. Krishnamurthy D, Structural Design and Drawing Voll, IlandIII, CBS Publishers, 2010.

2. Shah V L and Veena Gore, Limit State Design of Steel Structures

3. IS 800-2007, Structures Publications, 2009.

4. IS 456(2000) Indian Standard Plain and Reinforced Concrete-Code of Practice, Bureau of Indian Standards, New Delhi.

5.SP34 Handbook on Concrete Reinforcement and Detailing, Bureau of Indian Standards, New Delhi.

6. IS 800 (2007) Indian Standard General Construction In Steel—Code of Practice, Bureau of Indian Standards, New Delhi.

7.IS 875 Part 1 (2003) Code of Practice for Design Loads (Other Than Earthquake) for Buildings and Structures, Code of Practice-Dead Load, Bureau of Indian Standards, New Delhi.

8. IS 875 Part 2 (2003) Code of Practice for Design Loads (Other Than Earthquake) for Buildings and Structures, Code of Practice-Imposed Load, Bureau of Indian Standards, New Delhi.

9. IS 875 Part 3 (2003) Code of Practice for Design Loads (Other than Earthquake) for Buildings and Structures, Code of Practice-Wind Load, Bureau of Indian Standards, New Delhi.

10. IS 3370 Part 1 (2009) Indian Standard Concrete Structures for Storage of Liquids-Code of Practice–General Requirements, Code of Practice, Bureau of Indian Standards, New Delhi.

11. IS 3370 Part 2 (2009) Indian Standard Concrete Structures for Storage of Liquids-Code of Practice-Reinforced Concrete Structures, Code of Practice, Bureau of Indian Standards, New Delhi.

12. IS 3370–Part 4 (2008) Indian Standard Code of Practice for Concrete Structures for The Storage of Liquids-Design Tables, Code of Practice, Bureau of Indian Standards, New Delhi.

13.IS 804 (2008) Indian Standard Specification for Rectangular Pressed Steel Tanks, Code of Practice, Bureau of Indian Standards, New Delhi.

14.IS 805 (2006) Indian Standard Code of Practice for Use of Steel in Gravity Water Tanks, Code of Practice, Bureau of Indian Standards, New Delhi.

15.IRC 112-2011, Code of Practice for Concrete Road Bridges, The Indian Roads Congress, New Delhi.

16.IRC 6-2014, Standard Specifications and Code of Practice for Road Bridges Section: Il-Loads and Stresses, The Indian Roads Congress, New Delhi.

CE17	08					D	ESIG	N PR	OJEC	т				L	Т	Ρ	С
														0	0	4	2
OBJE	CTIVES	\$															
*	The ob	ojective	e of th	is co	urse i	s to ir	npart	and i	mpro	/e the	design	capat	oility of th	ne st	tude	nt. T	his
	course	conce	eives	purel	y a de	esign	probl	em in	any	one of	the d	isciplin	es of Ci	vil E	ngin	eerii	ng;
	e.g., [Design	of a	n RC	stru	cture,	Des	ign o	fav	vaste	water	treatm	ent plan	it, D)esig	in of	i a
	founda	ation s	ystem	, Des	sign o	f traff	ic inte	ersec	tion e	tc. The	e desi	gn pro	blem cai	n be	e allo	otted	to
	either	an Indi	vidua	l stud	ent or	a gro	oup of	stud	ents c	compris	sing of	not mo	ore than	tour	. At i	the e	nd
	of the	the data given, the design calculations, specifications if any and complete set of drawings															
	which follow the design.																
COUR	SE OUTCOMES																
Unon	second the course students will be able to																
opon	completion of the course, students will be able to																
CO1	Desigr	Design any of the Civil Engineering structure															
CO2	Interpret data, and synthesis the information to provide valid conclusions.																
CO3	Apply a	approp	oriate t	techni	iques,	mod	ern Ei	ngine	ering	tools to	o engir	eering	activities	s.			
CO4	Comm	unicate	e effe	ctively	/, mar	nage t	he tea	am or	partn	er							
CO5	Apply	ethical	princi	ples a	and co	ommit	to pro	ofessi	ional e	ethics a	and res	sponsil	oilities.				
				Μ	APPI	NG O	F CO	s WI	TH PC)s AN[D PSO	s					
													PROGF	RAM	SP	ECIF	:IC
COs				PRU	GRA			VIE3 ((PUS)				OUTC	OME	ES (I	PSO	s)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02	PS	03
CO1	3	3	2	2	3	2	1	3	2	2	3	2	2	1	I	3	;
CO2	3	3	2	2	3	2	1	3	2	2	3	2	2	1	I	3	;
CO3	3	3	2	2	3	2	1	2	2	3	3	2	1	1		3	5
CO4	3	3	2	2	3	2	1	2	2	3	3	2	1	1		3	;
CO5	3	3	2	2	3	2	1	2	2	3	3	2	1	1		3	;

CE18	07					Р	ROJE	ECT V	VORK	K				L	Т	Ρ	С
														0	0	20	10
OBJE	 JECTIVES To develop the ability to solve a specific problem right from its identification and literature 																
*	To de	velop	the a	bility	to sol	lve a	spec	ific pr	oblen	n right	from	its ide	ntificati	on	and	litera	ture
	review	till the	succ	essfu	l solut	tion of	f the s	same.	To tr	ain the	stude	nts in p	oreparir	ng p	oroje	ect rep	orts
	and to	face r	eview	s and	viva	voce	exami	inatior	า.								
STRA	TEGY:																
The st	udent w	orks o	on a to	pic a	pprov	ed by	the h	nead o	of the	depart	tment u	under t	he guic	land	ce o	f a fao	culty
memb	er and	prepar	es a	comp	rehen	sive	projec	ct rep	ort aff	ter cor	npletin	g the	work to	the	e sa	tisfact	ion.
The s	tudent	will be	eval	uated	base	ed on	the	repor	t and	the v	iva vo	ce exa	aminatio	on I	by a	a tean	n of
exami	ners inc	luding	one e	extern	al exa	amine	r.										
COUR	SE OU	ГСОМ	ES														
Upon o	completi	ion of t	he cou	ırse, s	tuden	ts will	be al	ole to									
CO1	Take up	p any c	hallen	ging p	ractica	ıl prob	lems i	in Civi	il Engi	ineering	g						
CO2	Solve the problem from its identification and through literature reviews																
CO3	Apply a	appropr	iate te	chniqu	ies, m	odern	Engin	eering	tools	to solv	e the pr	oblems					
CO4	Solve t	he prob	lem in	conte	xt wit	h soci	etal ar	nd env	ironme	ental ne	ed						
CO5	Prepare	e projec	t repo	rts, pre	esentat	tions a	nd to	face ir	itervie	WS							
				N	IAPP	ING (OF CO	Os WI	TH P	Os AN	D PSO	5					
													PROG	GRA	MS	SPECI	FIC
COs				PRO	GRA	ΜΟ	JTCO	MES	(POs)				OUT	CO	ME	S (PSC))
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	502	PSC	03
CO1	3	3	2	2	2	2	1	3	2	2	3	2	2		2	3	
CO2	3	3	2	2	2	2	1	3	2	2	3	2	2		2	3	
C03	3	3	2	2	- 2	2	1	3	2	2	3	2	2		2	2	
	2	2	2	2	2	2	1	2	2	2	2	2	2		2	2	
CO4	5	5	2	2	2	2	1	5	2	5	5	2	2		2	3	
CO5	3	3	2	2	2	2	1	3	2	3	3	2	2		2	3	

CE1001	REMOTE SENSING	L	Т	Ρ	С
		3	0	0	3
OBJECTIVE	S				
Torr	ake the students to understand the concepts, components and source of re-	emot	te		
Sens	ing.				
l Ing	ain knowledge about different types of remote sensing platforms and senso	ors			
 ✤ 10 € ♠ To µ 	concept of satellite image interpretation				
					0
Definition	components of PS History of Remote Sensing Marits and demorits	of	data		9
collation be	ween conventional and remote sensing methods - Electromagnetic Spe	s or s	m _		
Radiation r	rinciples - Wave theory Planck's law Wien's Displacement Law	Stef	an's	С	01
Boltzmann I	aw Kirchoff's law – Radiation sources: active & passive - Radiation Quanti	ties	ano		
	EMB INTERACTION WITH ATMOSPHERE AND EABTH MATERIAL			<u> </u>	9
Standard at	nospheric profile – main atmospheric regions and its characteristics – inter	actic	on of		Ŭ
radiation wi	h atmosphere Scattering absorption and refraction. Atmospheric wi	ndov	NC		
Energy hala	n almosphere – Scallening, absorption and renaction – Almosphere with	ittan	vs –	C	02
Spectroradio	meter - Spectral Signature concepts - Typical spectral reflectance of	irve	s for		02
vegetation.	soil and water – solid surface scattering in microwave region.	11 1 0 0 0			
				<u> </u>	٩
Motions of r	anets and satellites - Newton's law of gravitation - Gravitational field and	note	ntial		9
- Escape v	Plocity - Kenler's law of planetary motion - Orbit elements and types	- Or	hital		
perturbation	s and maneuvers – Types of remote sensing platforms - Ground based.	Airb	orne	C	03
platforms a	nd Space borne platforms – Classification of satellites – Sun synchron	ous	and		00
Geosynchro	nous satellites – Legrange Orbit.				
	SENSING TECHNIQUES			<u> </u>	9
Classificatio	n of remote sensors – Resolution concept : spatial, spectral, radiome	etric	and		
temporal res	olutions - Scanners - Along and across track scanners – Optical-infrared s	ensc	ors –		
Thermal set	sors – microwave sensors – Calibration of sensors - High Resolution S	enso	ors -	С	04
LIDAR , UA	/ –Orbital and sensor characteristics of live Indian earth observation satelli	tes			
	DATA INTERPRETATION AND CIVIL ENGINEERING APPLICATION	IS		<u> </u>	9
Photograph	c and digital products – Types, levels and open source satellite data pro	duc	ts		_
selection ar	d procurement of data- Visual interpretation: basic elements and inter	preta	ation		
keys – Digita	al interpretation – Concepts of Image rectification, Image enhancement and	l Ima	age	C	05
classification	- Civil Engineering applications: highway and railway alignments, site	seler	ction		00
for dams, to	wn and regional planning	50.00			
,	τοται	· 4	5 PF		DS
					20
TEXT BOO	(S				
1. Tł	omas M.Lillesand, Ralph W. Kiefer and Jonathan W. Chipman, Remote Se	ensin	ig an	d	
Im	age interpretation, John Wiley and Sons, Inc, New York, 2009.				
2. G	eorge Joseph and C Jeganathan, Fundamentals of Remote Sensing, Unive	ersitie	es Pr	ess	
(Ir	dia) Private limited, Hyderabad, 2018				

REFE	RENCE	BOO	٨S												
3.	Jan	za, F.Z	., Blu	e H.N	I. and	John	son,J	.E. Ma	anual	of Ren	note S	ensing	. Vol.I, A	merican	
	Soc	iety of	Photo	ogram	etry, '	Virgin	ia, US	SA, 20	02.						
4.	Verl	oyla, D	avid,	Satell	ite Re	emote	Sens	ing o	f Natu	Iral Re	source	s. CR0	C Press,	1995	
5.	Pau	l Curra	an P.J	. Prin	ciples	of Re	emote	Sens	sing. L	ongma	an, RL	BS, 20	03.		
6.	Intro	oductio	n to F	hysic	s and	Tech	inique	es of F	Remot	te Sens	sing , C	Charles	s Elachi a	and Jaco	b
	Van	Zyl, 2	006 E	dition	II, W	iley P	ublica	tion.							
7.	Bas	udeb E	3hatta	, Ren	note S	Sensir	ig and	I GIS,	Oxfo	rd Univ	versity	Press,	2011		
COUR	SE OU	тсом	ES												
Upon	comple	etion o	f the	cours	se, st	udent	s will	be a	ble to)					
CO1	Unders	stand t	he co	ncept	s and	laws	relate	ed to r	emote	e sensi	ng				
CO2	Under	stand t	he int	eracti	on of	electr	omag	netic	radiat	tion wit	h atmo	ospher	e and ea	rth mate	rial
CO3	Acquir	e know	vledge	e abou	ut sate	ellite c	orbits	and d	ifferer	nt type	s of sa	tellites			
CO4	Unders	stand t	he dif	ferent	types	s of re	mote	sens	ors						
CO5	Gain k	nowled	dge al	oout t	ne coi	ncept	s of in	terpre	etatior	n of sat	tellite i	magery	y and		
000	civil en	igineer	ing ap	oplica	tions										
				Μ	APPI	NG O	F CO	s WI1	TH PC)s AN[D PSO	s			
				PRO	GRA		тсог						PROG	RAM SP	ECIFIC
COs				I NO					1 03)				OUTC	OMES (I	PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-								_	1	-	-	1	2	2
	3	-	-	-	-	-	-	-	_						
CO2	-	-	-	-	-	-	-	-	-	3	-	-	2	3	2
CO2 CO3	3 - 2	-	-	-	-	- 3	- 3	-	-	3	-	-	2	3	2
CO2 CO3 CO4	3 - 2 2		- - 2			- 3 -	- 3	-	-	3	- - 1	- 2	2 2 2	3 1 2	2 2 1

CE1002	GEOGRAPHIC INFORMATION SYSTEM	L	Т	Ρ	С				
		3	0	0	3				
OBJECTIVES									
 To intro 	duce the fundamentals and components of Geographic Information Syst	tem							
 To prov 	ide details of spatial data structures and input, management and output	proc	esse	s.					
UNIT I	FUNDAMENTALS OF GIS				9				
Introduction to	GIS - Basic spatial concepts - Coordinate Systems - GIS and Infe	orma	ation						
Systems – Det	finitions – History of GIS - Components of a GIS – Hardware, Softwar	e, D)ata,	C	:01				
People, Metho	ds – Proprietary and open source Software - Types of data – Spatial,	Attri	bute		,01				
data- types of a	attributes – scales/ levels of measurements.								
UNIT II	SPATIAL DATA MODELS				9				
Database Stru	ctures – Relational, Object Oriented – Entities – ER diagram - data r	node	els -						
conceptual, log	gical and physical models - spatial data models – Raster Data Stru	cture	es –	C	:02				
Raster Data Compression - Vector Data Structures - Raster vs Vector Models- TIN and GRID									
data models.									
UNIT III	DATA INPUT AND TOPOLOGY				9				
Scanner - Rast	ter Data Input – Raster Data File Formats – Georeferencing – Vector Da	ata I	nput						
–Digitiser- – [Datum Projection and reprojection -Coordinate Transformation – Top	polo	gy -	C	ک ا،				
Adjacency, co	nnectivity and containment – Topological Consistency – Non topolog	gical	file		,05				
formats - Attrib	ute Data linking – Linking External Databases – GPS Data Integration								
UNIT IV	DATA QUALITY AND STANDARDS				9				
Data quality - E	Basic aspects - completeness, logical consistency, positional accuracy, t	temp	oral						
accuracy, them	natic accuracy and lineage – Metadata – GIS Standards –Interoperabilit	y - C	COC	С	;04				
- Spatial Data I	nfrastructure								
UNIT V	DATA MANAGEMENT AND OUTPUT				9				
Import/Export	- Data Management functions- Raster to Vector and Vector to	Ra	aster						
Conversion - [Data Output - Map Compilation – Chart/Graphs – Multimedia – Enterp	orise	Vs.	С	;05				
Desktop GIS d	istributed GIS.								
	TOTAL	.:4	5 PE	RIO	DS				

- 1. Kang Tsung Chang, Introduction to Geographic Information Systems, McGraw Hill Publishing, 2nd Edition, 2011.
- 2. Ian Heywood, Sarah Cornelius, Steve Carver, Srinivasa Raju, "An Introduction Geographical Information Systems, Pearson Education, 2nd Edition, 2007.

REFERENCE BOOKS

 Lo.C.P., Albert K.W. Yeung, Concepts and Techniques of Geographic Information Systems, Prentice-Hall India Publishers, 2006

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Have basic idea about the fundamentals of GIS.
CO2	Understand the types of data models.
CO3	Get knowledge about data input and topology.

CO4	Gain k	nowle	dge o	on dat	ta qua	ality a	nd st	andai	rds.							
CO5	Under	stand	data ı	mana	geme	ent fui	nctior	is and	d data	outpu	ıt					
	MAPPING OF COS WITH POS AND PSOS															
				PRO	GRA	моц		MES	POs)				PROG	RAM SP	ECIFIC	
COs		OUTCOMES (PSOs)														
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	-	1	-	2	1	-	-	-	-	-	-	1	2	2	
CO2	2	1	2	2	3	1	-	-	-	-	-	-	2	3	2	
CO3	2	1	2	2	3	1	-	-	-	-	-	-	2	1	2	
CO4	2	1	2	-	3	1	-	-	-	-	-	-	2	2	1	
CO5	2	-	2	-	3	1	-	-	-	-	-	-	3	2	2	

CE1003	GEOINFORMATICS APPLICATIONS FOR CIVIL ENGINEERS	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
 To solv 	e the Civil Engineering problems with the help of Geoinformatics techniq	ue.			
UNIT I	MAP PRODUCTION CONCEPTS				9
Maps - uses —	 Types of Maps – Map Scales – Map projections — Map co-ordinate sy 	/ster	ms –		
Elements of a	map - Map Layout principles - Map Design fundamentals - symbolic	ools	and		
conventional s	igns - colours and patterns in symbolization – map lettering - map proc	lucti	on –	С	:01
map printing-	colours and visualization – map reproduction - Map generalization – g	eom	etric		
transformations	s – bilinear and affine transformations.				
UNIT II	GIS AND SPATIAL DATA				9
Data – Informa	ation - Primary and Secondary data sources - GIS - Components of	a G	IS –		
Hardware, Soft	ware, Data, People, Methods - Types of data – Spatial, Attribute data -	- sc	ales/		• ^ ^2
levels of meas	surements - spatial data models - Raster vs Vector Models - Ras	ter	Data		ΟZ
Structures - TI	N and GRID data models.				
UNIT III	RASTER AND VECTOR DATA ANALYSIS				9
Raster Data a	nalysis: Query Analysis – Local, Focal and Zonal Operations – Cost-	Dista	ance		
Analysis - Leas	st Cost Path – Vector data analysis – attribute data analysis - query, cal	culat	tions		
- Integrated da	ata analysis - Reclassification, Aggregation, Overlay analysis: Point-in-	poly	gon,	С	03
Line1in-Polygo	n, Polygon-on-Polygon: Clip, Erase, Identity, Union, Intersection – F	Prox	imity		
Analysis: Buffe	ring				
UNIT IV	NETWORK ANALYSIS				9
Network – Intr	oduction - Network Data Model – Elements of Network - Building a	Net	work		
database - Ge	ocoding – Address Matching - Shortest Path in a Network – Time and	Dista	ance		۰ <u>۵</u> ۸
Based shortes	t path analysis – Driving Directions – Closest Facility Analysis – Cate	chm	ent /		-04
Service Area A	nalysis-Location-Allocation Analysis.				
UNIT V	MODELLING AND APPLICATIONS				9
Land Informati	on studies - Building information system – Digital Infrastructure manag	gem	ent -		
Watershed mo	odelling for sustainable development - modelling of reservoir siltatio	n –	soil	C	05
degradation as	ssessment - Highway alignment studies – Intelligent transportation sy	ster	ns –		00
Solid Waste ma	anagement - Air quality monitoring - Disaster management.				
	TOTAL	.:4	5 PE	RIO	DS

- C.P. Lo Albert K.W. Yeung, Concepts and Techniques of Geographic Information Systems, Second edition, PHI Learning Private Limited, Delhi, 2014.
- 2. Jonathan E. Campbell, Michael Shin, Essential of Geographic Information System, Saylor Foundation, 2011.

REFERENCE BOOKS

- 1. Ian Heywood, Sarah Cornelius, Steve Carver, Srinivasa Raju, "An Introduction to Geographical Information Systems, Pearson Education, 2nd Edition, 2007.
- 2. Michael N. DeMers, Fundamentals of geographic information systems, Wiley, 2009
- 3. John Peter Wilson, The handbook of geographic information science, Blackwell Pub., 2008
- 4. Harvey J.Miller, Shih-Lung Shaw, Geographic Information System for Transportation-

	Prin	ciple a	and Ap	oplica	tions,	Oxfoi	rd Uni	versit	y Pre	ss,200	1.					
5.	Kan	Principle and Applications, Oxford University Press, 2001. Kang-Tsung Chang, "Introduction to Geographic Information Systems", McGraw Hill Publishing, 2nd Edition, 2011. SE OUTCOMES completion of the course, students will be able to Understand the concepts of map making process. Gain knowledge on spatial data and Geographic Information System														
	Pub	lishing	, 2nd	Editic	on, 20	11.										
COUR	SE OU	тсом	ES													
Upon	comple	etion o	of the	cours	se, st	uden	ts wil	l be a	ble to)						
CO1	Under	stand t	he co	ncept	s of m	nap m	aking	proce	ess.							
CO2	Gain k	nowled	dge oi	n spat	tial da	ta an	d Geo	graph	nic Inf	ormatio	on Sys	tem				
CO3	Impart	the re	quired	d skills	s for a	inalyz	ing th	e spa	tial da	ata use	ful mo	delling	the real	world pr	oblems	
<u> </u>	Impart	Impart the required skills for analyzing the spatial data useful modelling transportation networks														
004	and re	and resource transport.														
005	Gain knowledge on the applicability of Geoinfomatics technology on diverse Civil Engineering															
005	Proble	ms														
				Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	S				
				DDC				MES					PROG	RAM SP	ECIFIC	
COs				FNU	GRA				(FUS)				OUTC	OMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	3	2	2	1	3	2	1	2	1	2	2	
CO2	3	3	3	2	3	2	2	1	2	2	2	1	2	3	2	
CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	1	2	
CO4	3	3	2	2	2	1	1	1	1	1	1	3	2	2	1	
CO5	3	3	3	3	2	1	2	1	3	1	1	3	3	2	2	

CE1004	ADVANCED SURVEYING TECHNIQUES	L	Τ	Ρ	С
		3	0	0	3
OBJECTIVES					
 To under 	erstand the working of Total Station and GPS and solve the surveying pr	oble	ms.		
UNIT I	FUNDAMENTALS OF TOTAL STATION AND ELECTROMAGNETIC	WA	VES		9
Methods of M	easuring Distance, Basic Principles of Total Station, Historical Devel	lopm	nent,		
Classifications,	applications and comparison with conventional surveying. Class	ifica	tion-	С	:01
applications of	Electromagnetic waves, Propagation properties, wave propagation at lo	wer	and		•
higher frequen	cies				
UNIT II	DISTANCE AND ATMOSPHERIC CORRECTION			_	9
Refractive inde	ex (RI) - factors affecting RI-Computation of group for light and near	infr	ared		
waves at stan	dard and ambient conditions-Computation of RI for microwaves at	amb	bient		
condition - Re	eference refractive index- Real time application of first velocity co	orrec	tion.	С	02
Measurement	of atmospheric parameters- Mean refractive index- Second velocity cor	rect	ion -		
Total atmosphe	eric correction- Use of temperature and pressure transducers.				
UNIT III	ELECTRO OPTICAL AND MICRO WAVE SYSTEM			_	9
Electro-optical	system: Measuring principle, Working principle, Sources of Error, Infra	ared	and		
Laser Total St	ation instruments. Microwave system: Measuring principle, working p	orinc	iple,		
Sources of Eri	ror, Microwave Total Station instruments. Comparison between Electron	o-op	otical	С	03
and Microwave	e system. Care and maintenance of Total Station instruments – Travers	sing	and		
Trilateration-CO	DGO functions, offsets and stake out-land survey applications.				1
UNIT IV	GPS SATELLITE SYSTEM				9
Basic concepts	s of GPS - Historical perspective and development - applications - Ge	eoid	and		
Ellipsoid- sate	llite orbital motion - Keplerian motion – Kepler's Law - Perturbing	force	es –		
Geodetic satell	ite - Doppler effect - Positioning concept –GNSS, IRNSS and GAGAN -	Diffe	erent	С	04
segments - spa	ace, control and user segments - satellite configuration – GPS signal str	ructu	ire –		
Orbit determin	ation and representation - Anti Spoofing and Selective Availability -	Tas	sk of		
control segmer	nt - GPS receivers.				_
UNIT V	GPS DATA PROCESSING			-	9
GPS observat	oles - code and carrier phase observation - linear combination and	der	ived		
observables -	concept of parameter estimation – downloading the data RINEX F	orm	at –		
Differential data	a processing – software modules -solutions of cycle slips, ambiguities, C	Conc	epts	С	05
of rapid, static	methods with GPS - semi Kinematic and pure Kinematic methods	-sate	ellite		
geometry & a	ccuracy measures - applications- long baseline processing- use of	aitte	erent		
sonwares.	TOTAL				De
	IOTAL	4		RIU	50

IEXI	BOOKS
1.	Rueger, J.M. Electronic Distance Measurement, Springer-Verlag, Berlin, 4th Edition,1996.
2.	Satheesh Gopi, rasathishkumar, N.madhu, — Advanced Surveying , Total Station GPS
	and Remote Sensing — Pearson education , 2nd Edition,2017. isbn: 978-81317 00679

1. R.Subramanian, Surveying and Levelling, Oxford University Press, Second Edition, 2012.

- 2. Laurila, S.H. Electronic Surveying in Practice, John Wiley and Sons Inc, 1983.
- 3. Guocheng Xu, GPS Theory, Algorithms and Applications, Springer Verlag, Berlin, 3rd

Edition,2016.

- 4. Alfred Leick, GPS satellite surveying, John Wiley & Sons Inc., 4th Edition, 2015.
- 5. Seeber G, Satellite Geodesy, Walter De Gruyter, Berlin, 2nd Edition, 2003.

COUR	SE OU	тсом	ES													
Upon	comple	etion o	of the	cours	se, st	udent	ts will	l be a	ble to)						
CO1	Learn	the fur	ndame	entals	of To	tal sta	ation.									
CO2	Provid	es kno	wledg	je abo	out ele	ectron	nagne	etic wa	aves a	and its	usage	in Tota	al station	and GP	S.	
CO3	Unders and G	stand t PS	he me	easuri	ing ar	nd wo	rking	princi	ple of	electro	o optic	al and	Microwa	ve Total	station	
CO4	Learn	the ba	sic co	ncept	s of G	SPS										
CO5	Gains	knowle	edge a	about	Total	statio	on and	GPS	data	downl	oading	and p	rocessin	g		
	L			Μ	APPI	NG O	F CO	s WI1	TH PC)s AN[) PSO	S				
								MEG					PROG	RAM SP	ECIFIC	
COs		PROGRAM OUTCOMES (POs) OUTCOMES (PSOs)														
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
C01	1	3	2	1	2	2	2	1	3	2	1	2	1	2	1	
CO2	1	2	2	2	1	2	2	1	2	2	2	1	2	3	2	
CO3	1	2	1	1	2	1	2	1	2	1	1	2	2	1	2	
CO4	1	1	1	1	3	1	1	1	1	1	1	3	2	2	2	
			1				i	1					-	-	-	

CE1005	AIR POLLUTION AND CONTROL ENGINEERING	L	Т	Ρ	С						
		3	0	0	3						
OBJECTIVES											
 To impa 	art knowledge on the principle and design of control of Indoor/ particula	ate/	gase	ous	air						
pollutar	at and its emerging trends.										
UNIT I	AIR QUALITY				9						
Structure and composition of Atmosphere – Definition, Scope and Scales of Air Pollution –											
Sources and classification of air pollutants and their effect on human health, vegetation,											
animals, prope	rty, aesthetic value and visibility- Ambient Air Quality and Emission star	ndar	ds –		01						
Ambient and st	ack sampling and Analysis of Particulate and Gaseous Pollutants.										
UNIT II	ATMOSPHERIC DISPERSION OF AIR POLLUTANT			-	9						
Effects of meter	eorology on Air Pollution - Fundamentals, Atmospheric stability, Inversion	on, V	Vind								
profiles and sta	ack plume patterns- Atmospheric Diffusion Theories – Dispersion models	s, Pl	ume	С	02						
rise											
UNIT III	CONTROL OF PARTICULATE POLLUTANTS			1	9						
Gas Particle I	nteraction – Working principle, Design and performance equations of	Gra	avity								
Separators, C	Centrifugal separators Fabric filters, Particulate Scrubbers, Elec	ctros	tatic	C	D 3						
Precipitators -	Operational Considerations- Factors affecting Selection of Control Equip	omer	nt.								
UNIT IV	CONTROL OF GASEOUS POLLUTANTS			1	9						
Working princip	ble, Design and performance equations of absorption, Adsorption, conde	ensa	tion,								
Incineration, E	Bio scrubbers, Bio filters – Process control and Monitoring – Op	erati	onal	C	04						
Considerations	- Factors affecting Selection of Control Equipment –CO2 capturing.										
UNIT V	INDOOR AIR QUALITY			-	9						
Sources types and control of indoor air pollutants, sick building syndrome types –Sources and											
Effects of Noise Pollution – Measurement – Standards–Control and Preventive measures.											
	TOTAL	.:4	5 PE	RIO	DS						

TEXT	BOOKS
1.	Lawrence K. Wang, Norman C. Pareira, Yung Tse Hung, Air Pollution Control Engineering,
0	TOKYO, 2004. Na alida Navana Air Dallutian Osatual Espirantian Ma Oracu IIII. Nava Varla 4005.
2.	Noel de Nevers, Air Pollution Control Engineering, Mc Graw Hill, New York, 1995.
3.	Anjaneyulu. Y, "Air Pollution and Control Technologies", Allied Publishers (P) Ltd., India
	2002
REFE	RENCE BOOKS
1.	David H.F. Liu, Bela G. Liptak "Air Pollution", Lweis Publisners, 2000.
2.	Arthur C.Stern, "Air Pollution (Vol.I – Vol.VIII)", Academic Press, 2006.
3.	Wayne T.Davis, "Air Pollution Engineering Manual", John Wiley & Sons, Inc.,2000
COUR	SE OUTCOMES
Upon	completion of the course, students will be able to
CO1	Understand the chemistry of atmosphere, characterize the air pollutants ,know

	the eff	the effects of air pollution, identify the criteria air pollutants and know about															
	NAAQ	NAAQS															
	Apply the knowledge of mathematics ,science and engineering fundamentals to																
CO2	unders	understand the concept of meteorology, air pollution dispersion and Gaussian															
	plume dispersion model																
CO3	Select suitable method and design the particulate pollutant control equipment																
CO4	Select	Select appropriate method for control of gaseous pollutant by due consideration of sources of															
	emissi	emission															
CO5	Unders	Jnderstand the source of indoor air pollution, effects and control methods as well as to identify															
	the source of noise ,and select suitable method for measuring and control of noise pollution																
	MAPPING OF COS WITH POS AND PSOS																
				PRO				MES	(POs)				PROG	RAM SP	ECIFIC		
COs				I KC					1 03)				OUTC	OMES (I	(PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	2	1	-	-	-	-	-	-	-	-	-	-	1	2	3		
CO2	2	1	-	-	-	-	-	-	-	-	-	-	1	2	3		
CO3	3	2	-	-	-	1	-	-	-	-	-	-	2	3	3		
CO4	3	2	-	-	-	1	-	-	-	-	-	-	2	3	3		
CO5	3	2	-	-	-	1	-	-	-	-	-	-	2	3	3		

IMPACT ASSESSMENT Impact	CE1006	ENVIRONMENTAL AND SOCIAL	L	Т	Ρ	С						
OBJECTIVES 3 0 0 3 OBJECTIVES To impart the knowledge and skills to identify, assess and mitigate the environmental and social impacts of development on Environmental projects 9 Impacts of Development on Environment – Rio Principles of Sustainable Development-Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – CO1 EAI in project cycle –EIA Notification and Legal Framework. 9 UNIT II ENVIRONMENTAL ASSESSMENT 9 Screening and Assessment of Impact on land, water, air, noise, flora and fauna - Matrices – CO2 Networks – Checklist Methods - Mathematical models for Impact prediction. 9 Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna – CO3 Clearance SOCIO ECONOMIC ASSESSMENT 9 Baseline monitoring of Socio economic environment – Identification of Project Alfected CO4 UNIT IV SOCIO ECONOMIC ASSESSMENT 9 Baseline monitoring of Socio economic environment – Identification of Environmental CO3 UNIT V CASE STUDIES CO5 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid CO5 Transport Systems - Airports - Dams and Irrigation projects - Power plants. CO5		IMPACT ASSESSMENT										
OBJECTIVES To impart the knowledge and skills to identify, assess and mitigate the environmental and social impacts of developmental projects UNIT I INTRODUCTION Impacts of Development on Environment – Rio Principles of Sustainable Development- Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – EIA in project cycle –EIA Notification and Legal Framework. UNIT II ENVIRONMENTAL ASSESSMENT Impacts – Checklist Methods - Mathematical models for Impact prediction. UNIT II ENVIRONMENTAL ASSESSMENT Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna – Environmental Monitoring Plan – EIA Report Preparation – Public Hearing-Environmental Clearance UNIT IV SOCIO ECONOMIC ASSESSMENT Plaseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental Impacts - Cost benefit Analysis UNIT V CASE STUDIES ELA case studies pertaining to Infrastructure Projects - Roads and Bridges – Mass Rapid Transport Systems - Airports - Dams and Irrigation projects - Power plants. TOTAL : 45 PERIODS Text BOOKS Canter, R.L., "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu,			3	0	0	3						
 To impart the knowledge and skills to identify, assess and mitigate the environmental and social impacts of developmental projects UNIT I INTRODUCTION 9 INTRACUTION 1000000000000000000000000000000000000	OBJECTIVES											
social impacts of developmental projects UNIT I INTRODUCTION 9 Impacts of Development on Environment – Rio Principles of Sustainable Development- Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – EIA in project cycle –EIA Notification and Legal Framework. UNIT II ENVIRONMENTAL ASSESSMENT 9 Screening and Assessment of Impact on land, water, air, noise, flora and fauna - Matrices – Networks – Checklist Methods - Mathematical models for Impact prediction and Assessment of Impact on water, air, noise, flora and fauna - Matrices – Networks – Checklist Methods - Mathematical models for Impact prediction. UNIT III ENVIRONMENTAL MANAGEMENT PLAN 9 Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna – Environmental Monitoring Plan – EIA Report Preparation – Public Hearing-Environmental Clearance 9 UNIT IV SOCIO ECONOMIC ASSESSMENT 9 Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental Impacts – Cost benefit Analysis UNIT V CASE STUDIES 9 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid Transport Systems - Airports - Dams and Irrigation projects - Power plants. TOTAL : 45 PERIODS TEXT BOOKS 1. Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. 2. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. 3. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. REFERENCE BOOKS 1. Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003. 2. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Prog	🛠 To imp	art the knowledge and skills to identify, assess and mitigate the env	viron	ment	tal a	and						
UNIT I INTRODUCTION 9 Impacts of Development on Environment – Rio Principles of Sustainable Development Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – EIA in project cycle –EIA Notification and Legal Framework. COI UNIT II ENVIRONMENTAL ASSESSMENT 9 Screening and Scoping in EIA – Drafting of Terms of Reference, Baseline monitoring, Prediction and Assessment of Impact on land, water, air, noise, flora and fauna - Matrices – Networks – Checkiist Methods - Mathematical models for Impact prediction. CO2 UNIT III ENVIRONMENTAL MANAGEMENT PLAN 9 Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna – Environmental Monitoring Plan – EIA Report Preparation – Public Hearing-Environmental Co3 CO3 UNIT IV SOCIO ECONOMIC ASSESSMENT 9 Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis 9 UNIT V CASE STUDIES 9 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid Transport Systems - Airports - Dams and Irrigation projects - Power plants. Co5 TEXT BOOKS 1. Catter, R.L, "Environmental Impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi,1995. 2. <td< td=""><td>social i</td><td>mpacts of developmental projects</td><td></td><td></td><td></td><td></td></td<>	social i	mpacts of developmental projects										
Impacts of Development on Environment – Rio Principles of Sustainable Development- Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – EIA in project cycle –EIA Notification and Legal Framework. C01 UNIT II ENVIRONMENTAL ASSESSMENT 9 Screening and Scoping in EIA – Drafting of Terms of Reference, Baseline monitoring, Prediction and Assessment of Impact on land, water, air, noise, flora and fauna - Matrices – Networks – Checklist Methods - Mathematical models for Impact prediction. C02 UNIT II ENVIRONMENTAL MANAGEMENT PLAN 9 Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna – Environmental Monitoring Plan – EIA Report Preparation – Public Hearing-Environmental Clearance 9 UNIT IV SOCIO ECONOMIC ASSESSMENT 9 Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis 9 UNIT V CASE STUDIES 9 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid Transport Systems - Airports - Dams and Irrigation projects - Power plants. C05 TEXT BOOKS 1. Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. 9 2. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpent	UNIT I	INTRODUCTION				9						
Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – C01 EIA in project cycle –EIA Notification and Legal Framework. 9 Screening and Scoping in EIA – Drafting of Terms of Reference, Baseline monitoring, Prediction and Assessment of Impact on land, water, air, noise, flora and fauna - Matrices – C02 Networks – Checklist Methods - Mathematical models for Impact prediction. 9 Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna – 9 Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna – C03 Clearance 0 9 UNIT IV SOCIO ECONOMIC ASSESSMENT 9 Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impact - Cost benefit Analysis 9 UNIT V CASE STUDIES 9 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid Transport Systems - Airports - Dams and Irrigation projects - Power plants. C05 TEXT BOOKS 1 Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. 2 2 Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overvie	Impacts of D	evelopment on Environment – Rio Principles of Sustainable Devel	opm	ent-								
EIA in project cycle –EIA Notification and Legal Framework. 9 UNIT II ENVIRONMENTAL ASSESSMENT 9 Screening and Scoping in EIA – Drafting of Terms of Reference, Baseline monitoring, Prediction and Assessment of Impact on land, water, air, noise, flora and fauna - Matrices – Networks – Checklist Methods - Mathematical models for Impact prediction. 9 UNIT III ENVIRONMENTAL MANAGEMENT PLAN 9 Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna – Environmental Monitoring Plan – EIA Report Preparation – Public Hearing-Environmental Clearance CO3 UNIT IV SOCIO ECONOMIC ASSESSMENT 9 Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis 9 UNIT V CASE STUDIES 9 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid Transport Systems - Airports - Dams and Irrigation projects - Power plants. Co5 TEXT BOOKS 1. Canter, R.L., "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. 2. 1. Canter, R.L., "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 2009. 2. REFERENCE BOOKS 1. Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" c	Environmental	Impact Assessment (EIA) – Objectives – Historical development – EIA	Тур	es –	C	01						
UNIT II ENVIRONMENTAL ASSESSMENT 9 Screening and Scoping in EIA – Drafting of Terms of Reference, Baseline monitoring, Prediction and Assessment of Impact on land, water, air, noise, flora and fauna - Matrices – Networks – Checklist Methods - Mathematical models for Impact prediction. CO2 UNIT III ENVIRONMENTAL MANAGEMENT PLAN 9 Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna – Environmental Monitoring Plan – EIA Report Preparation – Public Hearing-Environmental Clearance 9 UNIT IV SOCIO ECONOMIC ASSESSMENT 9 Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis 9 UNIT V CASE STUDIES 9 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid Transport Systems - Airports - Dams and Irrigation projects - Power plants. Co5 TEXT BOOKS 1. Canter, R.L., "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. 2. 2. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. 9 3. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", R	EIA in project of	cycle –EIA Notification and Legal Framework.										
Screening and Scoping in EIA – Drafting of Terms of Reference, Baseline monitoring, CO2 Prediction and Assessment of Impact on land, water, air, noise, flora and fauna - Matrices – Networks – Checklist Methods - Mathematical models for Impact prediction. CO2 UNIT III ENVIRONMENTAL MANAGEMENT PLAN 9 Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna – Environmental Monitoring Plan – EIA Report Preparation – Public Hearing-Environmental CO3 Clearance UNIT IV SOCIO ECONOMIC ASSESSMENT 9 Baseline monitoring of Socio economic environment – Identification of Project Affected CO4 Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis 9 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid CO5 Transport Systems - Airports - Dams and Irrigation projects - Power plants. CO5 TEXT BOOKS 1. Canter, R.L., "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. 2. 2. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. 9 3. Peter Morris, Riki Therive! "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. </td <td>UNIT II</td> <td>ENVIRONMENTAL ASSESSMENT</td> <td></td> <td></td> <td>_</td> <td>9</td>	UNIT II	ENVIRONMENTAL ASSESSMENT			_	9						
Prediction and Assessment of Impact on land, water, air, noise, flora and fauna - Matrices – CO2 Networks - Checklist Methods - Mathematical models for Impact prediction. 9 Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna – 9 Environmental Monitoring Plan – EIA Report Preparation – Public Hearing-Environmental CO3 UNIT IV SOCIO ECONOMIC ASSESSMENT 9 Baseline monitoring of Socio economic environment – Identification of Project Affected CO4 Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis 9 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid CO5 Transport Systems - Airports - Dams and Irrigation projects - Power plants. 9 EXT BOOKS 1. Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. 2. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Bank, 1997. 3. 3. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. 8 REFERENCE BOOKS 1. Becker H. A., Frank Vanclay,"The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003. 2. 1	Screening and Scoping in EIA – Drafting of Terms of Reference, Baseline monitoring,											
Networks - Checklist Methods - Mathematical models for Impact prediction. Impact prediction. UNIT III ENVIRONMENTAL MANAGEMENT PLAN 9 Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna – Environmental Monitoring Plan – EIA Report Preparation – Public Hearing-Environmental CO3 CO3 Clearance 9 Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis 9 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid Transport Systems - Airports - Dams and Irrigation projects - Power plants. Co5 TEXT BOOKS 1 Cotanter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers,2009. REFERENCE BOOKS 1. Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing,2003. 2. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme,2002. 3. Judith Petts, "Handbook of Environmental Impact Assessment Training Resource Manual", United Na	Prediction and	Assessment of Impact on land, water, air, noise, flora and fauna - Ma	atric	es –	C	02						
UNIT III ENVIRONMENTAL MANAGEMENT PLAN 9 Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna – Environmental Monitoring Plan – EIA Report Preparation – Public Hearing-Environmental Clearance CO3 UNIT IV SOCIO ECONOMIC ASSESSMENT 9 Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis 9 UNIT V CASE STUDIES 9 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid Transport Systems - Airports - Dams and Irrigation projects - Power plants. C05 TEXT BOOKS 1 Canter, R.L., "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. TotAL : 45 PERIODS 2 Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. 3. 3. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. REFERENCE BOOKS 1. Backer H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003. 2. 3. Beter Morris, Riki Therivel "Methods of Environm	Networks – Ch	ecklist Methods - Mathematical models for Impact prediction.										
Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna – CO3 Environmental Monitoring Plan – EIA Report Preparation – Public Hearing-Environmental Clearance CO3 UNIT IV SOCIO ECONOMIC ASSESSMENT 9 Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental Impacts – Cost benefit Analysis CO4 UNIT V CASE STUDIES 9 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid Transport Systems - Airports - Dams and Irrigation projects - Power plants. Co5 TEXT BOOKS TEXT BOOKS 1. Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. 2. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. 3. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. REFERENCE BOOKS 1. Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003. Sarry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme, 2002. <t< td=""><td>UNIT III</td><td>ENVIRONMENTAL MANAGEMENT PLAN</td><td></td><td></td><td></td><td>9</td></t<>	UNIT III	ENVIRONMENTAL MANAGEMENT PLAN				9						
Environmental Monitoring Plan – EIA Report Preparation – Public Hearing-Environmental Clearance CO3 UNIT IV SOCIO ECONOMIC ASSESSMENT 9 Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental Impacts – Cost benefit Analysis CO4 UNIT V CASE STUDIES 9 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid Transport Systems - Airports - Dams and Irrigation projects - Power plants. CO5 TEXT BOOKS TEXT BOOKS 1. Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. 2. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. 3. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. REFERENCE BOOKS 1. Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing,2003. 2. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme,2002. 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Black	Plan for mitiga	tion of adverse impact on water, air and land, water, energy, flora and	faui	na –								
Clearance 9 Baseline monitoring of Socio economic environment – Identification of Project Affected CO4 Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis CO4 UNIT V CASE STUDIES 9 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid C05 Transport Systems - Airports - Dams and Irrigation projects - Power plants. C05 TEXT BOOKS TEXT BOOKS I. Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. 2. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. 3. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. REFERENCE BOOKS 1. Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003. 2. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme, 2002. 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. <t< td=""><td>Environmental</td><td>Monitoring Plan – EIA Report Preparation – Public Hearing-Enviro</td><td>onme</td><td>ental</td><td>C</td><td>03</td></t<>	Environmental	Monitoring Plan – EIA Report Preparation – Public Hearing-Enviro	onme	ental	C	03						
UNIT IV SOCIO ECONOMIC ASSESSMENT 9 Baseline monitoring of Socio economic environment – Identification of Project Affected Co Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis CO4 UNIT V CASE STUDIES 9 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid Co5 Transport Systems - Airports - Dams and Irrigation projects - Power plants. TOTAL : 45 PERIODS TEXT BOOKS 1. Canter, R.L., "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. 2. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. 3. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. REFERENCE BOOKS 1. Becker H. A., Frank Vanclay,"The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003. 2. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. 4. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India	Clearance											
Baseline monitoring of Socio economic environment – Identification of Project Affected CO4 Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis 9 UNIT V CASE STUDIES 9 ElA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid Transport Systems - Airports - Dams and Irrigation projects - Power plants. CO5 TOTAL : 45 PERIODS TEXT BOOKS 1. Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. 2. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. 3. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. REFERENCE BOOKS 1. Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003. 2. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. 4. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010.		SOCIO ECONOMIC ASSESSMENT				9						
Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis CO4 UNIT V CASE STUDIES 9 ElA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid Transport Systems - Airports - Dams and Irrigation projects - Power plants. CO5 TOTAL : 45 PERIODS TEXT BOOKS 1. Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. 2. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. 3. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. REFERENCE BOOKS 1. Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003. 2. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme, 2002. 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. 4. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010.	Baseline mon	itoring of Socio economic environment – Identification of Project	Affe	cted								
Impacts – Cost benefit Analysis 9 UNIT V CASE STUDIES 9 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid C05 Transport Systems - Airports - Dams and Irrigation projects - Power plants. C05 TOTAL : 45 PERIODS TEXT BOOKS 1. Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. 2. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. 3. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. REFERENCE BOOKS 1. Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003. 2. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme, 2002. 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. 4. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010.	Personal – R	ehabilitation and Resettlement Plan- Economic valuation of Enviro	nme	ental	C	04						
UNIT V CASE STUDIES 9 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid Transport Systems - Airports - Dams and Irrigation projects - Power plants. C05 TOTAL : 45 PERIODS TEXT BOOKS 1. Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. 2. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. 3. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. REFERENCE BOOKS 1. Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003. 2. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme, 2002. 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. 4. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010.	impacts – Cos	benefit Analysis				-						
 EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid Transport Systems - Airports - Dams and Irrigation projects - Power plants. TOTAL : 45 PERIODS TEXT BOOKS 1. Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. 2. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. 3. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. REFERENCE BOOKS 1. Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003. 2. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme, 2002. 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. 4. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010. 		CASE STUDIES		<u> </u>		9						
 Transport Systems - Airports - Dams and Irrigation projects - Power plants. TOTAL : 45 PERIODS TEXT BOOKS Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. REFERENCE BOOKS Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010.	EIA case stud	lies pertaining to Infrastructure Projects – Roads and Bridges – Mas	s R	apid	С	05						
 Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. REFERENCE BOOKS Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010. 	Transport Syst	ems - Airports - Dams and Irrigation projects - Power plants.										
 Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. REFERENCE BOOKS Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme, 2002. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010. 		IOTAL	.:4:	D PE	RIO	D2						
 Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. REFERENCE BOOKS Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme, 2002. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010. 	TEXT BOOKS	· · · · · · · · · · · · · · · · · · ·										
 Delhi, 1995. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009. REFERENCE BOOKS Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme, 2002. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010. 	1 Cante	er R L "Environmental impact Assessment " 2nd Edition McGraw Hill Ir	nc N	lew								
 Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank,1997. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers,2009. REFERENCE BOOKS Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing,2003. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme,2002. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010. 	Delhi	.1995.	10, 11									
 "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank,1997. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers,2009. REFERENCE BOOKS Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing,2003. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme,2002. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010. 	2. Loha	ni, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.	L. Tu	J,								
 Asian Development Bank,1997. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers,2009. REFERENCE BOOKS Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing,2003. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme,2002. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010. 	"Envi	ronmental Impact Assessment for Developing Countries in Asia", Volume	e 1 –	- Ove	ervie	w,						
 Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers,2009. REFERENCE BOOKS Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing,2003. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme,2002. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010. 	Asiar	n Development Bank,1997.										
 Publishers,2009. REFERENCE BOOKS Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing,2003. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme,2002. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010. 	3. Peter	Morris, Riki Therivel "Methods of Environmental Impact Assessment", R	outle	edge	!							
 REFERENCE BOOKS Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing,2003. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme,2002. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010. 	Publi	shers,2009.										
 Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing,2003. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme,2002. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010. 	REFERENCE	BOOKS										
 conceptual and methodological advances, Edward Elgar Publishing,2003. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme,2002. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010. 	1. Beck	er H. A., Frank Vanclay,"The International handbook of social impa	ct a	sses	sme	ent"						
 Barry Sadier and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme,2002. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010. 	conce	eptual and methodological advances, Edward Elgar Publishing,2003.										
 Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010. 	2. Barry	y Sadler and Mary McCabe, "Environmental Impact Assessment Tra	ining	ј Ке	sou	rce						
 Science New York, 1998. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010. 	Manu 2 Judit	ai, United Nations Environment Programme,2002.	а II"	, DI	acky	المر						
 Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010. 	S. Juun Scier	n Fetts, Thandbook of Environmental impact Assessment vol. I am ace New York 1998	uп	, Die	acri	ven						
India, New Delhi, 2010.	Science New York, 1998. Ministry of Environment and Ecrosts EIA Notification and Sectoral Guides, Government											
	 Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government India. New Delhi. 2010. 											
COURSE OUTCOMES												
Upon completion of the course, students will be able to	Upon complet	tion of the course, students will be able to										
CO1 Carry out scoping and screening of developmental projects for environmental and social	CO1 Carry of	out scoping and screening of developmental projects for environme	ntal	and	SO	cial						

	assessments															
CO2	Explain different methodologies for environmental impact prediction and assessment															
CO3	Plan environmental impact assessments and environmental management plans															
CO4	Evaluate environmental impact assessment reports															
CO5	Mitigate the environmental and social impacts of developmental projects															
	MAPPING OF COs WITH POs AND PSOs															
PROGRAM OUTCOMES (POs)														ECIFIC		
COs													OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3	
CO1	3	2	-	-	-	2	2	1	3	2	1	2	1	2	2	
CO2	3	2	-	-	-	2	2	1	2	2	2	1	2	3	2	
CO3	3	2	-	-	-	1	2	1	2	1	1	2	2	1	2	
CO4	3	2	-	-	-	1	1	1	1	1	1	3	2	2	1	
CO5	3	2	-	-	-	1	2	1	3	1	1	3	3	2	2	

CE1007	INDUSTRIAL WASTEWATER TREATMENT	L	Т	Ρ	С					
		3	0	0	3					
OBJECTIVES										
 To impa 	art knowledge on composition treatment and effective disposal of industri	al el	fflue	nts						
UNIT I	SOURCES OF POLLUTANTS				9					
Sources of Pol	lution - Physical, Chemical, Organic & Biological properties of Industrial \	Nast	tes							
- Difference be	tween industrial & municipal waste waters - Effects of industrial effluents	on		C	:01					
sewers and Na	tural water Bodies.									
UNIT II	PRIMARY TREATMENT OF POLLUTANTS			I	9					
Pre & Primary	Treatment - Equalization, Proportioning, Neutralization, Oil separation by	/								
Floating-Waste Reduction-Volume Reduction-Strength Reduction.										
UNIT III	WASTE TREATMENT METHODS				9					
Waste Treatme	ent Methods - Nitrification and De-nitrification-Phosphorous removal -Hea	зvy			-					
metal removal	- Membrane Separation Process - Air Stripping and Absorption Processe) s -		С	:03					
Special Treatm	ent Methods - Disposal of Treated Waste Water.									
UNIT IV	CHARACTERISTICS AND COMPOSITION OF INDUSTRIAL WASTE	WA	ΓER		9					
Characteristics	and Composition of waste water and Manufacturing Processes of Indus	tries	like		-					
Sugar, Chara	cteristics and Composition of Industries like Food processing Industries	dust	ries,	С	:04					
Tanneries - Joi	nt Treatment of Raw Industries waste water and Domestic Sewage.									
UNIT V	OIL REFINERS, PHARMACEUTICAL PLANTS				9					
Characteristics	and Composition of Industries like Textiles, and other Mineral Pro	ces	sing							
Industries – St	eel, and Petroleum Refineries – Common Effluent Treatment Plants(CET	P) –	C	:05					
Location, Desig	gn, Operation and Maintenance Problems – Economical aspects.									
	TOTAL	.:4	5 PE	RIC	DS					
TEXT BOOKS										
1. Har Nos	ndbook of Industrial Waste Disposal by Richard A. Conway Richard Ross strand publisher (1980)	– Va	an							
2. Eck	enfelder, W.W., "Industrial Water Pollution Control". McGraw-Hill									
3. Met	calf & Eddy, "Wastewater engineering Treatment disposal reuse", Tata N	/IcGi	aw	Hill						

- 1. Industrial Waste Treatment: Contemporary Practice and Vision for the Future by Nelson Leonard Nemerow, Nemerow Butterworth Weinemann publisher (2006)
- 2. Wastewater Treatment by M. N. Rao and A. K. Datta-Oxford I. B. H publishers
- 3. C.G. Gurnham Principles of Industrial Waste Engineering.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Distinguish between the quality of domestic and industrial water requirements and
001	Wastewater quantity generation
CO2	Understand the industrial process, water utilization and waste water generation
CO3	Impart knowledge on selection of treatment methods for industrial wastewater
CO4	Acquire the knowledge on operational problems of common effluent treatment plants.

Gain knowledge on different techniques and approaches for minimizing the generation and
 application of Physio chemical and biological treatment methods for recovery, reuse and
 disposal of industrial wastewater.

	MAPPING OF COS WITH POS AND PSOS														
COs			PROGRAM SPECIFIC OUTCOMES (PSOs)												
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
C01	3	1	-	3	3	-	2	-	3	2	1	2	-	2	2
CO2	3	1	-	3	3	-	2	-	3	2	1	2	-	2	2
CO3	3	1	-	3	3	-	2	-	3	2	1	2	-	2	2
CO4	3	1	-	3	3	-	2	-	3	2	1	2	-	2	2
CO5	3	1	-	3	3	-	2	-	3	2	1	2	-	2	2

3 0 0 3 OBJECTIVES * To make the students conversant with the types, sources, generation, storage, collection, transport, processing and disposal of municipal solid waste 9 UNIT I SOURCES AND CHARACTERISTICS 9 Sources and types of municipal solid wastes-waste generation rates-factors affecting generation, characteristics-methods of sampling and characterization; Effects of improper disposal of solid wastes-Public health and environmental effects. Elements of solid waste management –Social and Financial aspects – I solid waste (M&H) rules – integrated solidwaste management-Public awareness; Role of NGO" s- Public Private participation. 9 On-site storage methods – Effect of storage, materials used for containers – segregation of solid waste – Public health and environmental aspects of open storage – waste segregation and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Recycling of plastic waste –Construction and Demolishing waste. 9 Methods of Residential and commercial waste collection – Collection vehicles – Manpower – Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & maintenance; options under Indian conditions – Field problems- solving 9 Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditions – Site selection, design and operation of sanitary landfills – Land fill liners – Management of leachate and landfill gas- Landfill bioreactor – Dumpsite capping –Biomini	CE1008	MUNICIPAL SOLID WASTE MANAGEMENT	L	Т	Ρ	С					
OBJECTIVES To make the students conversant with the types, sources, generation, storage, collection, transport, processing and disposal of municipal solid waste UNIT I SOURCES AND CHARACTERISTICS 9 Sources and types of municipal solid wastes-waste generation rates-factors affecting generation, characteristics-methods of sampling and characterization; Effects of improper disposal of solid wastes-Public health and environmental effects. Elements of solid waste management –Social and Financial aspects – I solid waste (M&H) rules – integrated solidwaste management-Public awareness; Role of NGO" s- Public Private participation. 9 UNIT II ON-SITE STORAGE AND PROCESSING 9 9 On-site storage methods – Effect of storage, materials used for containers – segregation of solid waste – Public health and environmental aspects of open storage – waste segregation and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Recycling of plastic waste – Construction and Demolishing waste. 9 Methods of Residential and commercial waste collection – Collection vehicles – Manpower – Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & maintenance; options under Indian conditions – Field problems- solving 9 MIT IV OFF-SITE PROCESSING 19			3	0	0	3					
To make the students conversant with the types, sources, generation, storage, collection, transport, processing and disposal of municipal solid waste 9 UNIT I SOURCES AND CHARACTERISTICS 9 Sources and types of municipal solid wastes-waste generation rates-factors affecting generation, characteristics-methods of sampling and characterization; Effects of improper disposal of solid wastes-Public health and environmental effects. Elements of solid waste management –Social and Financial aspects – I solid waste (M&H) rules – integrated solidwaste management-Public awareness; Role of NGO" s- Public Private participation. 9 UNIT II ON-SITE STORAGE AND PROCESSING 9 On-site storage methods – Effect of storage, materials used for containers – segregation of solid wastes – Public health and environmental aspects of open storage – waste segregation and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Recycling of plastic waste –Construction and Demolishing waste. 9 UNIT III COLLECTION AND TRANSFER 9 Methods of Residential and commercial waste collection – Collection vehicles – Manpower – Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & maintenance; options under Indian conditions – Field problems- solving 9 Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanatior; Thermal processing options – case studies under Indian conditions. 9 Objectives of solid waste; Sanitary landfil	OBJECTIVES										
transport, processing and disposal of municipal solid waste UNIT I SOURCES AND CHARACTERISTICS 9 Sources and types of municipal solid wastes-waste generation rates-factors affecting generation, characteristics-methods of sampling and characterization; Effects of improper disposal of solid wastes-Public health and environmental effects. Elements of solid waste management –Social and Financial aspects – I solid waste (M&H) rules – integrated solidwaste management-Public awareness; Role of NGO" s- Public Private participation. 9 On-site storage methods – Effect of storage, materials used for containers – segregation of solid wastes – Public health and environmental aspects of open storage – waste segregation and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Recycling of plastic waste –Construction and Demolishing waste. 9 UNIT II COLLECTION AND TRANSFER 9 Methods of Residential and commercial waste collection – Collection vehicles – Manpower – Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & maintenance; options under Indian conditions – Field problems- solving 9 Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditions. 9 UNIT IV DISPOSAL 9 Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and land	To make	ke the students conversant with the types, sources, generation, stor	age	, col	lecti	on,					
UNIT ISOURCES AND CHARACTERISTICS9Sources and types of municipal solid wastes-waste generation rates-factors affecting generation, characteristics-methods of sampling and characterization; Effects of improper disposal of solid wastes-Public health and environmental effects. Elements of solid waste management –Social and Financial aspects – I solid waste (M&H) rules – integrated solidwaste management-Public awareness; Role of NGO" s- Public Private participation.CO1UNIT IION-SITE STORAGE AND PROCESSING9On-site storage methods – Effect of storage, materials used for containers – segregation of solid wastes – Public health and environmental aspects of open storage – waste segregation and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Recycling of plastic waste –Construction and Demolishing waste.9UNIT IIICOLLECTION AND TRANSFER9Methods of Residential and commercial waste collection – Collection vehicles – Manpower – Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & maintenance; options under Indian conditions – Field problems- solving9Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditils – site selection, design and operation of sanitary land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor – Dumpsite capping –Biomining.9	transpo	rt, processing and disposal of municipal solid waste									
Sources and types of municipal solid wastes-waste generation rates-factors affecting generation, characteristics-methods of sampling and characterization; Effects of improper disposal of solid wastes-Public health and environmental effects. Elements of solid waste management –Social and Financial aspects – I solid waste (M&H) rules – integrated solidwaste management-Public awareness; Role of NGO" s- Public Private participation. VIIT VIIT II ON-SITE STORAGE AND PROCESSING 9 On-site storage methods – Effect of storage, materials used for containers – segregation of solid wastes – Public health and environmental aspects of open storage – waste segregation and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Recycling of plastic waste –Construction and Demolishing waste. 9 Nethods of Residential and commercial waste collection – Collection vehicles – Manpower – Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & maintenance; options under Indian conditions – Field problems- solving 9 Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor – Dumpsite capping –Biomining. 9	UNIT I	SOURCES AND CHARACTERISTICS				9					
generation, characteristics-methods of sampling and characterization; Effects of improper CO1 disposal of solid wastes-Public health and environmental effects. Elements of solid wastes CO1 management-Social and Financial aspects – I solid waste (M&H) rules – integrated solidwaste 9 UNIT II ON-SITE STORAGE AND PROCESSING 9 On-site storage methods – Effect of storage, materials used for containers – segregation of solid wastes – Public health and environmental aspects of open storage – waste segregation and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Recycling of plastic waste –Construction and Demolishing waste. 9 Methods of Residential and commercial waste collection – Collection vehicles – Manpower – Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & maintenance; options under Indian conditions – Field problems- solving 9 Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – site selection, design and operation of sanitary landfills – site selection, design and operation of sanitary landfills – site selection, design and operation of sanitary landfills – site selection, design and operation of sanitary landfills – site selection, design and operation of sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor – Dumpsite caping –Biomining. CO5	Sources and	types of municipal solid wastes-waste generation rates-factors	affe	cting							
disposal of solid wastes-Public health and environmental effects. Elements of solid wastes C01 management –Social and Financial aspects – I solid waste (M&H) rules – integrated solidwaste 9 UNIT II ON-SITE STORAGE AND PROCESSING 9 On-site storage methods – Effect of storage, materials used for containers – segregation of solid wastes – Public health and environmental aspects of open storage – waste segregation and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Recycling of plastic waste –Construction and Demolishing waste. 9 NINT III COLLECTION AND TRANSFER 9 Methods of Residential and commercial waste collection – Collection vehicles – Manpower – Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & maintenance; options under Indian conditions – Field problems- solving 9 Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – site selection, design and operation of sanitary landfills – site selection, design and operation of sanitary landfills – site selection, design and operation of sanitary landfill gas- Landfill bioreactor – Dumpsite capping –Biomining. 9	generation, characteristics-methods of sampling and characterization; Effects of improper										
management –Social and Financial aspects – I solid waste (M&H) rules – integrated solidwaste 9 UNIT II ON-SITE STORAGE AND PROCESSING 9 On-site storage methods – Effect of storage, materials used for containers – segregation of solid wastes – Public health and environmental aspects of open storage – waste segregation and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Recycling of plastic waste –Construction and Demolishing waste. 9 UNIT III COLLECTION AND TRANSFER 9 Methods of Residential and commercial waste collection – Collection vehicles – Manpower – Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & maintenance; options under Indian conditions – Field problems- solving 9 Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditils – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor – Dumpsite caping –Biomining. 9	disposal of so	lid wastes-Public health and environmental effects. Elements of soli	id w	aste	С	;01					
management-Public awareness; Role of NGO" s- Public Private participation. 9 UNIT II ON-SITE STORAGE AND PROCESSING 9 On-site storage methods – Effect of storage, materials used for containers – segregation of solid wastes – Public health and environmental aspects of open storage – waste segregation and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Reverse ing of plastic waste –Construction and Demolishing waste. 9 UNIT III COLLECTION AND TRANSFER 9 Methods of Residential and commercial waste collection – Collection vehicles – Manpower – Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & mathematic; options under Indian conditions – Field problems- solving 9 Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under indian conditions. 9 UNIT V DISPOSAL 9 Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – site selection, design and operation of sanitary landfills – site selection, design and operation of sanitary landfills – site selection, design and operation of sanitary landfills – site selection, design and operation of sanitary landfills – site selection, design and operation of sanitary landfills – site selection, design and operation of sanitary landfills – site selection, design and operation of sanitary landfills – site selection, design and operation of sanitary landfills – site selection, des	management -	-Social and Financial aspects – I solid waste (M&H) rules – integrated so	olidw	aste							
UNIT IION-SITE STORAGE AND PROCESSING9On-site storage methods – Effect of storage, materials used for containers – segregation of solid wastes – Public health and environmental aspects of open storage – waste segregation and storage – ase studies under Indian conditions – source reduction of waste – Reduction, Reuse and Reversion of plastic waste –Construction and Demolishing waste.Public Processing – Subject to a state and and commercial waste collection – Collection vehicles – Manpower – Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & maintenance; options under Indian conditions – Field problems- solving9Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditions.9UNIT VDISPOSAL9Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor – Dumpsite caping –Biomining.9	management-F	Public awareness; Role of NGO [®] s- Public Private participation.									
On-site storage methods – Effect of storage, materials used for containers – segregation of solid wastes – Public health and environmental aspects of open storage – waste segregation and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Reciping of plastic waste – Construction and Demolishing waste. Image: Coll Coll Coll Coll Coll Coll Coll Col	UNIT II	ON-SITE STORAGE AND PROCESSING				9					
solid wastes – Public health and environmental aspects of open storage – waste segregation and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Revealed to plastic waste –Construction and Demolishing waste. Image: Coll Coll Coll Coll Coll Coll Coll Col	On-site storage	e methods – Effect of storage, materials used for containers – segregatio	on of								
and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Recycling of plastic waste –Construction and Demolishing waste. 9 UNIT III COLLECTION AND TRANSFER 9 Methods of Residential and commercial waste collection – Collection vehicles – Manpower – Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & mintenance; options under Indian conditions – Field problems- solving CO3 UNIT IV OFF-SITE PROCESSING 9 Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditions. 9 UNIT V DISPOSAL 9 Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor – 	solid wastes -	Public health and environmental aspects of open storage – waste segree	gatic	n	C	:02					
Reuse and Reversion of plastic waste –Construction and Demolishing waste. UNIT III COLLECTION AND TRANSFER 9 Methods of Reversion and commercial waste collection – Collection vehicles – Manpower – Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & mintenance; options under Indian conditions – Field problems- solving CO3 UNIT IV OFF-SITE PROCESSING 9 Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditions. 9 UNIT V DISPOSAL 9 Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor – Dumpsite caping –Biomining. 9 TOTAL : 45 PERIJUST	and storage –	case studies under Indian conditions – source reduction of waste – Redu	ictio	n,	Ŭ	02					
UNIT IIICOLLECTION AND TRANSFER9Methods of Residential and commercial waste collection – Collection vehicles – Manpower – Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & mintenance; options under Indian conditions – Field problems- solvingCO3UNIT IVOFF-SITE PROCESSING9Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditions.9UNIT VDISPOSAL9Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor – Dumpsite capitary – Biomining.9TOTAL : 45 PERJUSE	Reuse and Reo	cycling of plastic waste –Construction and Demolishing waste.									
Methods of Residential and commercial waste collection – Collection vehicles – Manpower – Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & mintenance; options under Indian conditions – Field problems- solving Voit UNIT IV OFF-SITE PROCESSING 9 Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditions. 9 UNIT V DISPOSAL 9 Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor – Dumpsite capirg –Biomining. 9 Cost TOTAL : 45 PERJUSC	UNIT III	COLLECTION AND TRANSFER				9					
Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & minenance; options under Indian conditions – Field problems- solving CO3 UNIT IV OFF-SITE PROCESSING 9 Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditions. CO4 UNIT V DISPOSAL 9 Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor – Dumpsite capping –Biomining. 9 CO5	Methods of Re	esidential and commercial waste collection – Collection vehicles – Man	pow	er –							
operation & maintenance; options under Indian conditions – Field problems- solving9UNIT IVOFF-SITE PROCESSING9Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditions.6UNIT VDISPOSAL9Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor – Dumpsite capping –Biomining.9Cots	Collection route	es – Analysis of collection systems; Transfer stations – Selection of locat	tion,		С	;03					
UNIT IVOFF-SITE PROCESSING9Objectives of set processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under train conditions. $\[\] \] \] \] \] \] \] \] \] \] \] \] \] $	operation & ma	aintenance; options under Indian conditions – Field problems- solving									
Objectives of waste processing – Physical Processing techniques and Equipment; Resource V recovery from solid waste composting and biomethanation; Thermal processing options – case CO4 studies under Indian conditions. 9 UNIT V DISPOSAL 9 Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary 9 landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor – CO5 Dumpsite capping –Biomining. TOTAL : 45 PERLIST	UNIT IV	OFF-SITE PROCESSING				9					
recovery from solid waste composting and biomethanation; Thermal processing options – case studies under I-dian conditions. CO4 UNIT V DISPOSAL 9 Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – La-dfill liners – Management of leachate and landfill gas- Landfill bioreactor – Dumpsite capping –Biomining. 9 CO5 TOTAL : 45 PER-US	Objectives of w	aste processing – Physical Processing techniques and Equipment; Res	ourc	е							
studies under Indian conditions. UNIT V DISPOSAL 9 Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor – Dumpsite capping –Biomining. CO5 TOTAL : 45 PERIOS	recovery from s	solid waste composting and biomethanation; Thermal processing options	6 – C	ase	С	04					
UNIT V DISPOSAL 9 Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor – Dumpsite capping –Biomining. CO5 TOTAL : 45 PERIOS	studies under I	ndian conditions.									
Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary Iandfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor – CO5 Dumpsite capping –Biomining. TOTAL : 45 PERIODS	UNIT V	DISPOSAL				9					
landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor – CO5 Dumpsite capping –Biomining. TOTAL : 45 PERIODS	Land disposal	of solid waste; Sanitary landfills - site selection, design and operation of	sani	tary							
Dumpsite capping –Biomining. TOTAL : 45 PERIODS	landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor –										
TOTAL : 45 PERIODS	Dumpsite capping –Biomining.										
		TOTAL	.:4	5 PE	RIO	DS					

TEXT B	OOKS
1.	Cherry P M, Solid and Hazardous Waste Management, CBS publishers and distributors Pvt
	Ltd, 2018
2.	Rao M.N, Razia Sultana, Sri Harsha Kota, solid and hazardous waste management –
	Science and Engineering, Butterworth-Heinemann, 2016
REFERE	ENCE BOOKS
1.	George Tchobanoglous, Hilary Theisen and Samuel A, Vigil, "Integrated Solid
	Waste Management, Mc-Graw Hill India, First edition, 2015.
2.	CPHEEO, "Manual on Municipal Solid waste management, Vol I, II and III, Central
	Public Health and Environmental Engineering Organisation, Government of India, New
	Delhi, 2016.
3.	William A. Worrell, P. Aarne Vesilind, Christian Ludwig, Solid Waste Engineering - A Global
	Perspective, 3rd Edition, Cengage Learning, 2017.
4	Michael D. LeCrease Dhilip I. Buckingham Jeffroy, C. E. yone and "Environmental

4. Michael D. LaGrega, Philip L Buckingham, Jeffrey C. E vans and "Environmental Resources Management, Hazardous waste Management", Mc-Graw Hill International edition, New York, 2010.

5. John Pitchtel, Waste Management Practices, CRC Press, Taylor and Francis Group, 2014.

6.	6. Gary C. Young, Municipal Solid Waste to Energy.															
COUR	COURSE OUTCOMES															
Upon	Upon completion of the course, students will be able to															
CO1	Gain k	nowled	dge or	n the l	basics	s of pr	opert	ies of	matte	er and i	its app	ication	S,			
<u> </u>	Acquir	Acquire knowledge on the concepts of waves and optical devices and their applications in fibre														
002	optics.															
<u> </u>	Have adequate knowledge on the concepts of thermal properties of materials and their															
003	applications in expansion joints and heat exchangers.															
CO4	Get knowledge on advanced physics concepts of quantum theory and its applications in															
004	tunneling microscopes, and															
CO5	CO5 Understand the basics of crystals, their structures and different crystal growth techniques.															
				Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	s				
													PROG	RAM SP	ECIFIC	
COs				PRU	GRA			VIE3 ((PUS)				OUTC	OMES (I	PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	3	2	2	1	3	2	1	2	1	2	2	
CO2	3	3	3	2	3	2	2	1	2	2	2	1	2	3	2	
CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	1	2	
CO4	3	3	2	2	2	1	1	1	1	1	1	3	2	2	1	
CO5	3	3	3	3	2	1	2	1	3	1	1	3	3	2	2	

CE1009	PAVEMENT ENGINEERING											
		3	0	0	3							
OBJECTIVES												
 Student 	gains knowledge on various IRC guidelines for designing rigid and flexit	ole										
paveme	ents.											
 Further 	, the student will be in a position to assess quality and evaluate the											
service	ability conditions of pavements											
UNIT I	PAVEMENT TYPES AND STRESS DISTRIBUTION				9							
Introduction – Pavement as layered structure – Pavement types rigid and flexible. Resilient												
modulus - Stre	ss and deflections in pavements under repeated loading.				01							
UNIT II DESIGN OF FLEXIBLE PAVEMENTS												
Flexible pave	ment design Factors influencing design of flexible pavement, E	Empi	irical									
Mechanistic er	npirical and theoretical methods – Design procedure as per IRC guid	lelin	es –	С	02							
Design and specification of rural roads.												
UNIT III	DESIGN OF RIGID PAVEMENTS			<u> </u>	9							
Cement concrete pavements Factors influencing CC pavements - Modified Westergaard												
approach – De	sign procedure as per IRC guidelines – Concrete roads and their scope i	in In	dia.	C	03							
UNIT IV	PAVEMENT CONSTRUCTION, EVALUATION AND MAINTENANCE			1	9							
Construction c	f pavements – Construction Equipments-Methods of construction. Pa	aver	nent									
Evaluation - Ca	auses of distress in rigid and flexible pavements - Evaluation based on	Sur	face									
Appearance,	Cracks, Patches and Pot Holes, Undulations, Raveling, Roughnes	SS,	Skid	С	04							
Resistance. S	tructural Evaluation by Deflection Measurements - Pavement Servi	cea	bility									
index, - Pavem	ent maintenance (IRC Recommendations only).											
UNIT V	STABILIZATION OF PAVEMENTS				9							
Stabilization wi	th special reference to highway pavements – Choice of stabilizers – Tes	sting	and		~-							
field control - S	tabilization for rural roads in India – Use of Geosynthetics in roads.			C	05							
TOTAL : 45 PERIO												
TEXT BOOKS												
1. Khanna, S.K. and Justo C.E.G.and Veeraragavan, A, "Highway Engineering", New Chand												
and Brothers. Revised 10th Edition. 2014.												

- 2. Yoder, R.J. and Witchak M.W. "Principles of Pavement Design", John Wiley 2000.
- 3. R.Srinivasa Kumar., "Pavement Engineering" Universities Press (India) Private Limited, Hyderabad, 2013.
- 4. Prithvi Singh Kandhal," Bituminous Road Construction in India", PHI Learning Private Limited, New Delhi, 2016.

- 1. Rajib B.Mallick and Tahar El-Korchi, "Pavement Engineering Principles and Practice:, CRC Press, 2009
- Kadiyali, L.R., "Principles and Practice of Highway Engineering", Khanna tech. Publications, New Delhi, 2005
- 3. Guidelines for the Design of Flexible Pavements, IRC-37–2012, The Indian roads Congress,

New Delhi.

4. Guideline for the Design of Rigid Pavements for Highways, IRC 58-1998, The Indian Road Congress, New Delhi.

COUR	SE OU	тсом	ES												
Upon	comple	etion o	of the	cours	se, st	udent	ts wil	l be a	ble to	b					
CO1	Explai	n conc	epts a	and st	andar	ds ad	opted	l in Pl	annin	g, Des	ign and	d const	truction o	of	
001	Pavem	Pavements.													
CO2	Apply	Apply the knowledge of science and engineering fundamentals in designing flexible													
002	pavem	pavement. by adopting various design standards													
CO3	Apply the standards adopted in designing rigid pavement.														
CO4	Select appropriate methods for construction and evaluation of Pavements														
CO5	Addres	ss the	proble	em sta	ateme	nt in d	constr	uctior	n of pa	aveme	nt and	to imp	art know	ledge	
005	in stab	ilizatio	n tecł	nnique	es.										
				Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	S			
								MES					PROG	RAM SP	ECIFIC
COs				FNU	GRA				(FUS)				OUTC	OMES (PSOs)
	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	1	3	2	1	2	3	2	1	3	2	1	2	1	2	1

CO1	1	3	2	1	2	3	2	1	3	2	1	2	1	2	1
CO2	1	2	2	2	1	2	2	1	2	2	2	1	2	3	2
CO3	1	2	1	1	2	2	1	1	2	1	1	2	2	1	1
CO4	1	1	1	1	3	1	1	1	1	1	1	3	2	2	1
CO5	1	3	1	1	3	3	1	1	3	1	1	3	3	2	1

CE1010	TRAFFIC ENGINEERING AND MANAGEMENT	L	Т	Ρ	С					
		3	0	0	3					
OBJECTIVES										
 To give 	an overview of Traffic engineering, various surveys to be conducted, tra	affic	Regu	ulat	ion,					
manage	ement and traffic safety.									
UNIT I	TRAFFIC CHARACTERISTICS				10					
Road Characteristics – Classification – Functions and standards – Road user characteristics –										
PIEV theory –	Vehicle – Performance characteristics – Fundamentals of Traffic Flow –	Urba	an	C	:01					
Traffic problem	s in India.									
UNIT II	TRAFFIC SURVEYS				7					
Traffic Surveys	s – Speed, journey time and delay surveys – Vehicle Volume Survey – I	Meth	nods							
and interpretat	on – Origin Destination Survey – Methods and presentation – Parking S	urve	у —	6	<u>`</u> _2					
Methods, interp	pretation and presentation – Statistical applications in traffic studies and	traffi	с		,02					
forecasting - le	evel of service – Concept, application and significance.									
UNIT III	TRAFFIC ENGINEERING REGULATION AND CONTROL				8					
Capacity of R	otary intersection and Design – Capacity of signalized intersections -	– Tr	affic							
signals, warra	nts, type – Design and coordination – Intersection channelization -	- G	rade	C	:03					
separation – Ti	affic signs and road markings.									
UNIT IV	TRAFFIC SAFETY AND ENVIRONMENT				10					
Road acciden	ts – Causes, effect, prevention, and cost – street lighting – Tra	ffic	and							
environment h	azards – Air and Noise Pollution, causes, health effects and ab	ater	nent	C	04					
measures.										
UNIT V	TRAFFIC MANAGEMENT				10					
Area Traffic Ma	anagement System – One way street system, exclusive traffic lanes, tida	l flov	v							
operation, stag	gering of work hours and road pricing – Non road pricing options _ Parki	ng								
charges, Publi	c transport, Subsidies, Vehicle License fees, Road Building, Permit	sys	tem,	6	05					
Physical Traffic	c Management Transport System Management (TSM) and Transport	Dem	and		.05					
Management (TDM) Introduction to Intelligent Transportation Systems (ITS)- ITS										
Applications in	Traffic Management.									
	TOTAL	.:4	5 PEI	RIC	DS					

- 1. Kadiyali. L.R. Traffic Engineering and Transport Planning, Khanna Publishers, Delhi, 2008.
- Khanna .K and Justo C.E.G. and Veeraragavan, A Highway Engineering, Nem Chand Bros., Roorkee, Revised 10th Edition, 2014.
- 3. Srinivasa Kumar, "Introduction to Traffic Engineering", Universities Press, 2018
- 4. Partha Chakroborty and Animesh Das Principles of Transportation Engineering, PHI Learning Pvt. Ltd., 2011

REFERENCE BOOKS

- 1. Indian Roads Congress (IRC) Specifications: Guidelines and special publications on Traffic Planning and Management.
- 2. C. Jotin Khisty, Kent Lall, Transportation Engineering: An Introduction, Prentice Hall, 1998
- 3. Hobbs. F.D. Traffic Planning and Engineering, University of Brimingham, Peragamon Press Ltd, 1994.
- 4. Taylor MAP and Young W, Traffic Analysis New Technology and New Solutions, Hargreen

Publishing Company, 1998.

- 5. Jason C.Yu Transportation Engineering, Introduction to Planning, Design and Operations, Elsevier, 1992.
- 6. Salter. R.I and Hounsell N.B, Highway Traffic Analysis and design, Macmillan Press Ltd.1996.
- 7. Roger P.Roess, William R.Mcshane and Elena S.Prassas, Traffic Engineering-Second Edition, Prentice Hall Publishers,, Upper Saddle River, New Jersey 1998.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand the principles and standards adopted in Planning and Design of Traffic system.
CO2	Apply the knowledge of science and engineering fundamentals in conducting traffic surveys
002	and analyze the problems.
CO3	Designing various types of control and regulatory measures to meet an efficient traffic network.
CO4	Select appropriate methods to ensure the safety of the road users and analyze the
	environmental issues related to traffic network.
CO5	Understand various traffic management measures in addressing the demand,
000	pricing and ITS applications.

MAPPING OF COs WITH POs AND PSOs

Cos					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	-	-	-	-	2	-	3	-	1	-	-	3	2	-
CO2	3	-	3	3	2	2	-	-	-	1	-	2	3	3	1
CO3	-	3	3	2	3	-	-	-	3	2	2	3	3	3	1
CO4	2	3	2	1	3	-	-	3	3	3	2	3	3	3	2
CO5	-	2	1	1	2	-	1	3	3	1	1	3	2	1	1

CE1011	TRANSPORTATION PLANNING AND SYSTEMS	L	Т	Ρ	С							
		3	0	0	3							
OBJECTIVES												
 To give 	an exposure on overview of the principles of the bus and rail transpo	rtatio	on p	lann	ing							
and eva	aluation of the transportation projects.											
UNIT I	STUDY AREA AND SURVEYS				9							
Importance of	planning and integrated transport facilities in urban areas – Delineation o	f stu	ıdy									
area and zoning – Conducting various surveys – Travel patterns, transport facilities and C												
planning parameters.												
UNIT II MODES												
Basics of trip	generation - Trip distribution - Trip assignment and modal split m	ode	ls –	C	02							
Validation of th	e model.			Ŭ	02							
UNIT III	PLAN PREPARATION AND EVALUATION				9							
Preparation of	alternative plans – Evaluation techniques – Economic and financial evalu	uatic	n –	C	03							
Environment Impact Assessment (EIA) – Case Studies.												
UNIT IV BUS TRANSPORTATION												
Characteristics	and bus transportation in urban areas - Fare policy - Route pla	nnir	ng –	C	04							
Planning of ter	minals – Break even point and its relevance.			Ŭ	04							
UNIT V	RAIL TRANSPORTATION				9							
Characteristics	of suburban, IRT and RRT systems - Planning of rail terminals - Fare p	olic	y —	C	05							
Unified traffic a	nd transport authority.											
	TOTAL	. : 4	5 PE	RIO	DS							
TEAT BOOKS												
1. Michae	J.Bruton, Introduction to Transportation Planning, Hutchinson, London,	199	5.									
2. Kadiyal	i. L.R., Traffic Engineering and Transport Planning, Khanna Publishers, I	Delh	i, 20	08.								
REFERENCE BOOKS												
1. John W	. Dickey, Metropolitan Transportation Planning, Tata McGraw Hill Publis	hing	Cor	npai	ny							
Ltd., Ne	ew Delhi, 1990.											
2. C. Jotin Khisty, Kent Lall, Transportation Engineering: An Introduction, Prentice Hall, 1998												

- 3. Juan de Dios Ort zar and Luis G. Willumsen, Modelling Transport, John Wiley & Sons 2001
- 4. Chennai Comprehensive Traffic Study, Chennai Metropolitan Development Authority, 2007.

COURSE OUTCOMES

Upon completion of the course, students will be able to

-	•										
CO1	Understand the concepts and surveys adopted in Transportation planni	ng									
CO2	Knowledge on modelling of trip generation assigning and distribution te	chniques in									
CO3	Planning and evaluating transportation projects through various case studies.										
CO4	Knowledge on planning of bus transportation system in urban areas.										
CO5	Planning of various rail transportation and fare policies adopted.										
	MAPPING OF COS WITH POS AND PSOS										
Cos	PROCEMM OUTCOMES (BOS)	PROGRAM SPECIFIC									
005	FROGRAM OUTCOMES (FOS)	OUTCOMES (PSOs)									

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	2	-	3	-	1	-	-	3	2	-
CO2	3	-	3	3	2	2	-	-	-	1	-	2	3	3	1
CO3	-	3	3	2	3	-	-	-	3	2	2	3	3	3	1
CO4	2	3	2	1	3	-	-	3	3	3	2	3	3	3	2
CO5	-	2	1	1	2	-	1	3	3	1	1	3	2	1	1

CE1012	URBAN PLANNING AND DEVELOPMENT	PMENT L T P										
		3	0	0	3							
OBJECTIVES												
 To enal 	ble students to have the knowledge on planning process and to introduce	e to	the									
student	s about the regulations and laws related to Urban Planning.											
UNIT I	BASIC ISSUES				9							
Definition of Human settlement, Urban area, Town, City, Urbanisation, Suburbanisation, Urban sprawl, Peri-urban areas, Central Business District (CBD), Classification of urban areas – Trend of Urbanisation at International, National, Regional and State level.												
UNIT II PLANNING PROCESS												
Principles of Planning – Types and Level of Plan, Stages in Planning Process – Goals,												
Objectives, De	lineation of Planning Areas, Surveys and Questionnaire Design.			C	;02							
UNIT III	DEVELOPMENT PLANS, PLAN FORMULATION AND EVALUATION				9							
Scope and Cor	ntent of Regional Plan, Master Plan, Detailed Development Plan, Develo	pme	ent									
Control Rules,	Transfer of Development Rights, Special Economic Zones- Development	nt of		С	;03							
small town and	I smart cities-case studies,				-							
UNIT IV	PLANNING AND DESIGN OF URBAN DEVELOPMENT PROJECT				9							
Site Analysis, I	ayout Design, Planning Standards, Project Formulation – Evaluation, Pl	an		6	••••							
Implementation	n, Constraints and Implementation, Financing of Urban Development Pro	ject	S.		,04							
UNIT V LEGISLATION, DEVELOPMENT AND MANAGEMENT OF URBAN SYSTEM												
Town and Country Planning Act, Land Acquisition and Resettlement Act etc., Urban Planning												
Standards and	Regulations, Involvement of Public, Private, NGO, CBO and Beneficiarie	es.			.05							
TOTAL : 45 PERIC												

TEXT	TEXT BOOKS											
1.	Goel, S.L Urban Development and Management, Deep and Deep publications, New Delhi											
	2002											
2.	George Chadwick, A Systems view of planning, Pergamon press, Oxford 1978											
3.	Singh V.B, Revitalised Urban Administration in India, Kalpaz publication, Delhi, 2001											
4.	Edwin S.Mills and Charles M.Becker, Studies in Urban development, A World Bank											
	publication, 1986											
REFE	RENCE BOOKS											
1.	Tamil Nadu Town and Country Planning Act 1971, Government of Tamil Nadu, Chennai											
2.	Goel S.L., Urban Development and Management, Deep and Deep Publications, New											
	Delhi,2002											
3.	Thooyavan, K.R., Human Settlements – A Planning Guide to Beginners, M.A Publications,											
	Chennai, 2005											
4.	CMDA, Second Master Plan for Chennai, Chennai 2008											
COUF	RSE OUTCOMES											
Upon	completion of the course, students will be able to											
CO1	Understand the basic concepts in urban planning and development.											
CO2	Knowledge on principles of planning, surveys and analysis. in developing an urban area.											

٦

CO3	Knowledge on development of regional, master plan and norms for development of smart cities.														
CO4	Planni	ng of s	tanda	ırds, iı	mplan	iting a	nd fin	ancin	g of L	Jrban p	project	S.			
CO5	Understand the norms, legal aspects and stakeholders role in planning an urban area.														
MAPPING OF COS WITH POS AND PSOS															
					PROGRAM SPECIFIC										
Cos															PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	-	-	3	-	3	-	-	3	3	-
CO2	3	3	3	3	2	-	-	-	3	-	-	-	3	-	2
CO3	3	1	2	-	-	2	-	3	-	2	-	3	3	-	2
CO4	-	1	2	3	-	2	-	3	3	2	3	3	2	2	3
CO5	-	-	-	-	-	-	1	3	3	3	-	-	-	3	2

CE1013	HYDROLOGY AND WATER RESOURCES ENGINEERING	L	Т	Ρ	С			
		3	0	0	3			
OBJECTIVES								
To intro	oduce the student to the concept of hydrological aspects of water	ava	ilabil	ity a	and			
require	ments and should be able to quantify, control and regulate the water reso	ourc	es.					
UNIT I	PRECIPITATION AND ABSTRACTIONS				9			
Hydrological o	cycle- Meteorological measurements – Requirements, types and f	orm	s of					
precipitation -	Rain gauges -Spatial analysis of rainfall data using Thiessen and I	sohy	yetal					
methods-Interception - Evaporation. Horton's equation, pan evaporation measurements and								
evaporation su	uppression - Infiltration-Horton's equation - double ring infiltrometer, ir	nfiltra	ation					
indices.								
UNIT II	RUNOFF				9			
Watershed, catchment and basin - Catchment characteristics - factors affecting runoff - Run off								
estimation us	ing empirical – Strange's table and SCS methods – Stage d	isch	arge	C	;02			
relationships- f	low measurements- Hydrograph – Unit Hydrograph – IUH							
UNIT III	FLOOD AND DROUGHT				9			
Classification of	of reservoirs, General principles of design, site selection, spillways, ele	vati	on –		03			
area - capacity	- storage estimation, sedimentation - life of reservoirs - rule curve			Ŭ	00			
UNIT IV	RESERVOIRS				9			
Rural Develop	ment - Ecological sustainabilityWatershed development and conse	rvati	on -	C	<u>،</u> م			
Ecosystem reg	eneration – Wastewater reuse - Sustainable livelihood - Food security				,04			
UNIT V	GROUNDWATER AND MANAGEMENT				9			
Origin- Classification and types - properties of aquifers- governing equations – steady and								
unsteady flow ·	- artificial recharge – Rain Water Harvesting in rural and urban areas				,05			
	TOTAL	.:4	5 PE	RIO	DS			
TEXT BOOKS								

1. Subramanya. K. "Engineering Hydrology"- Tata McGraw Hill, 2010.

2. Jayarami Reddy. P. "Hydrology", Tata McGraw Hill, 2008.

 Linsley, R.K. and Franzini, J.B. "Water Resources Engineering", McGraw Hill International Book Company, 1995.

REFERENCE BOOKS

- 1. David Keith Todd. "Groundwater Hydrology", John Wiley & Sons, Inc. 2007.
- Ven Te Chow, Maidment, D.R. and Mays, L.W. "Applied Hydrology", McGraw Hill International Book Company, 1998.
- 3. Raghunath. H.M., "Hydrology", Wiley Eastern Ltd., 1998.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Define the key drivers on water resources, hydrological processes and their integrated
	behaviour in catchments
	Apply the knowledge of hydrological models to surface water problems including basin
002	characteristics, runoff and Hydrograph
CO3	Explain the concept of hydrological extremes such as Flood and Drought and management

	strateg	jies														
CO4	Descri	Describe the importance of spatial analysis of rainfall and design water storage reservoirs														
CO5	Apply	the co	ncepts	s of gi	ound	water	for w	ater re	esour	ces ma	anager	nent				
				Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	S				
				PRO	GRA	моц	псо	MES	(POs)				PROG	RAM SP	ECIFIC	
COs												OUTCOMES (PSOs)				
	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3	
CO1	2	2	2	2	2	1	2	2	-	-	-	2	2	2	2	
CO2	3	2	3	3	3	2	-	3	-	2	2	2	2	3	2	
CO3	3	3	3	2	3	2	2	2	-	2	3	2	1 2 3			
CO4	3	3	3	3	3	3	-	3	-	2	2	3	3 3 3			
CO5	2	3	3	2	3	2	-	3	2	3	3	3	2	2	3	

CE1014	INTEGRATED WATER RESOURCES MANAGEMENT	L	Т	Ρ	С				
		3	0	0	3				
OBJECTIVES									
To intro	oduce the students to the interdisciplinary analysis of water and conce	ptua	al de	sign	of				
interver	ntion strategies.								
To deve	elop a knowledge-base on capacity building on IWRM.								
UNIT I	IWRM FRAMEWORK				9				
Definition, clas	ssification, and characteristics of systems - Scope and steps in	syst	ems						
engineering -	Need for systems approach to water resources and irrigation. Def	initic	on –	C	01				
Objectives – Principles - Evolution of IWRM - IWRM relevance in water resources management									
- Paradigm shift : Processes and prospective outcomes									
UNIT II CONTEXTUALIZING IWRM									
IWRM in Glo	bal, Regional and Local water partnership – Institutional transforr	natio	on -	C	02				
Bureaucratic re	oforms - Inclusive development			Ŭ	02				
UNIT III	EMERGING ISSUES IN WATER MANAGEMENT				9				
Bellman's opti	mality criteria, problem formulation and solutions - Application to des	sign	and						
operation of re	servoirs, Single and multipurpose reservoir development plans - Case	stuc	dies.	C	03				
Emerging Issue	es Drinking water management in the context of climate change - IW	'RM	and	Ŭ	00				
irrigation - Floo	d – Drought– Linkages between water, health and poverty								
UNIT IV	IWRM AND WATER RESOURCES DEVELOPMENT IN INDIA				9				
Rural Develop	ment - Ecological sustainabilityWatershed development and conser	rvati	on -	C	04				
Ecosystem reg	eneration – Wastewater reuse - Sustainable livelihood - Food security				04				
UNIT V ASPECTS OF INTEGRATED DEVELOPMENT 9									
Capacity building - Conceptual framework of IWRM – Problems and policy issues - Solutions									
for effective int	egrated water management - Case studies				00				
	TOTAL	. : 4	5 PE	rio	DS				
TEXT BOOKS									
1. Mollinga	a P. et al. "Integrated Water Resources Management", Water in South As	sia \	/olun	ne I,					

- Sage Publications, 2006.
- 2. Sithamparanathan, Rangasamy, A., and Arunachalam, N., "Ecosystem Principles and Sustainable Agriculture", Scitech Publications (India) Pvt.Lt, Chennai, 1999.

- 1. Cech Thomas V., Principles of Water Resources: History, Development, Management and Policy. John Wiley and Sons Inc., New York. 2003.
- 2. Murthy, J.V.S., "Watershed Management in India", Wiley Eastern Ltd., New York, 1995.
- 3. Dalte, S.J.C., "Soil Conservation and Land Management", International Book Distribution, India, 1986.
- Wagner H.M., "Principles of Operations Research with Application to Management Decisions", Prentice Hall, India, New Delhi, 1993.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Understand objectives, principles and evolution of integrated water resources management.

CO2	Get an IWRM	et an exposure towards well design and practical problems Have an idea of contextualizing NRM															
CO3	Gain k povert	Bain knowledge in emerging issues in water management, flood, drought, pollution and poverty.															
CO4	Under	stand t	he wa	ater re	sourc	es de	velop	ment	in Ind	lia and	waste	water	reuse.				
CO5	Gain k	nowlee	dge oi	n integ	grated	d deve	elopm	ent of	wate	r mana	ageme	nt.					
				Μ	APPI	NG O	F CO	s WI1	TH PC)s ANI	D PSO	S					
				PRO		моц	тсо	MES	(POs)				PROG	RAM SP	ECIFIC		
COs													OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	1	-	1	1	-	-	2	-	3	1	-	3	2	2		
CO2	2	3	2	2	1	2	2	2	2	3	1	2	2	2	2		
CO3	2	2	2	-	2	2	2	3	3	3	1	2	2	2	2		
CO4	2	2	2	-	1	-	-	2	2	3	-	2	2	2	2		
CO5	2	2	2	1	1	-	-	3	2	3	1	3	3	3	3		

CE1015	GROUNDWATER ENGINEERING	L	Т	Ρ	С			
		3	0	0	3			
OBJECTIVES								
To intr	oduce the student to the principles of Groundwater governing	Equ	atior	is a	and			
Charac	teristics of different aquifers,							
 To under 	erstand the techniques of development and management of groundwate	r.						
UNIT I	HYDROGEOLOGICAL PARAMETERS				9			
Introduction -	Water bearing Properties of Rock - Type of aquifers - Aquifer prop	pertie	es –					
permeability, s	pecific yield, transmissivity and storage coefficient - Methods of Estin	matio	on –	C	:01			
GECnorms - Steady state flow - Darcy's Law - Groundwater Velocity Dupuit Forchheimer								
assumption – Steady Radial Flow into a Well								
UNIT II	WELL HYDRAULICS				9			
Unsteady state	e flow - Theis method - Jacob method – Chow's method – Law of Times	s – T	heis					
Recovery – Bailer method – Slug method - tests - Image well theory – Partial penetrations of C								
wells – Well los	sses – Specific Capacity and Safe yield - Collector well and Infiltration ga	allery	'					
UNIT III	GROUNDWATER QUALITY				9			
Ground water	chemistry - Origin, movement and quality - Water quality standards -	Drin	king					
water - Indus	strial water – Irrigation water - Ground water Pollution and legi	slatio	on -	С	;O3			
Environmental	Regulatory requirements							
UNIT IV	GROUNDWATER MANAGEMENT				9			
Need for Mar	agement Model – Database for Groundwater Management – Grou	undw	/ater					
balance study	- Introduction to Mathematical model - Model Conceptualization - In	nitial	and	C C	۰ <u>۵</u> ۱			
Boundary Con	dition - Calibration - Validation - Future Prediction - Sensitivity Ar	nalys	is –					
Uncertainty – Development of a model								
UNIT V	GROUNDWATER CONSERVATION				9			
Artificial recharge techniques – Reclaimed wastewater recharge – Soil aquifer treatment (SAT)								
– Aquifer Stora	age and Recovery (ASR)Seawater Intrusion and Remediation – Grou	nd w	ater	C	:05			
Basin manage	ment and Conjunctive use – Protection zone delineation, Contaminatio	n so	urce					
inventory and r	emediation schemes							
	ΤΟΤΑΙ	_:4	5 PE	RIO	DS			

- 1. Raghunath H.M., "Ground Water Hydrology", New Age International (P) Limited, New Delhi, 2010.
- 2. Todd D.K., "Ground Water Hydrology", John Wiley and Sons, New York, 2000.

REFERENCE BOOKS

- 1. Fitts R Charles, "Groundwater Science". Elsevier, Academic Press, 2002.
- 2. Ramakrishnan, S, Ground Water, K.J. Graph arts, Chennai, 1998.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1Understand aquifer properties and its dynamicsCO2Get an exposure towards well design and practical problemsCO3Students will be able to understand the importance of artificial recharge and groundwater
quality concepts.

CO4	Develo	op a m	odel f	or gro	undw	ater n	nanag	jemer	nt.							
CO5	CO5 Gain knowledge on conservation of groundwater.															
	MAPPING OF COs WITH POs AND PSOs															
				PRO	GRA	MOU		MES	POs)				PROG	RAM SP	ECIFIC	
COs									,				OUTC	OMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	-	1	1	2	3	-	-	1	2	2	2	2	
CO2	3	3	3	-	2	2	2	1	-	-	2	2	2	3	2	
CO3	2	2	2	-	3	3	2	3	-	-	2	3	3	3	3	
CO4	2	2	3	-	3	2	2	2	-	-	3	2	3 3 3			
CO5	2	2	2	3	3	3	2	3	3	3	2	2	3	3	3	

CE1016	WATER RESOURCES SYSTEMS ENGINEERING	L	Т	Ρ	С
		3	0	0	3
OBJEC	TIVES				
* T	o impart knowledge and skills relevant to application of systems concept to w	vate	r res	our	ces
p	lanning and management. Optimization technique for modeling water resource	es s	yster	ns a	and
а	dvanced optimization techniques to cover the socio-technical aspects will be ta	ugh	t.		
UNIT I	SYSTEM CONCEPTS				9
Definitio	n, classification, and characteristics of systems - Scope and steps in s	syst	ems	C	:01
enginee	ring - Need for systems approach to water resources and irrigation.				
UNIT II	LINEAR PROGRAMMING				9
Introduc	tion to operations research - Linear programming, problem formulation, g	rapl	nical		
solution,	solution by simplex method - Sensitivity analysis, application to design and o	pera	ation	C	;02
of reserv	oir, single and multipurpose development plans - Case studies.				
	DYNAMIC PROGRAMMING	• • • • •		1	9
Bellman	s optimality criteria, problem formulation and solutions - Application to des	sign India	and	C	;03
		udie	s.		0
Basic pr	Simulation	hnic		<u> </u>	9
- Model	development - Inputs and outputs - Single and multipurpose reservoir sin	mula	ation	C	:04
models -	- Case studies.	mane			
UNIT V	ADVANCED OPTIMIZATION TECHNIQUES				9
Integer	and parametric linear programming - Goal programming models with app	licat	ions		<u> </u>
Discrete	differential dynamic programming and incremental dynamic programming	- Li	near	C	;05
decision	rule models with application - Stochastic dynamic programming models.				
	TOTAL	: 4	5 PE	rio	DS
TEXT B	OOKS				
1.	Chaturvedi. M.C., "Water Resources Systems Planning and Management"	. Ta	ita M	cGi	raw
	Hill, New Delhi, 1997.				
2.	Mays L.W., and Tung YK. "Hydro systems Engineering and Management". M	cGr	aw H	lill h	nc
	New York, 1992.				,
REFERE					
1.	Gupta P.K and Man Mohan, "Problems in Operations Research (Methods a	and	solu	tion	s)".
	Sultan Chand and sons, New Delhi, 1995				,
2.	Hiller F.S and Liebermann G.J., "Operations Research CBS Publications and	d di	stribu	utior	าร".
	New Delhi, 1992.				
3.	Goodman Alvin S., "Principles of Water Resources Planning", Prentice Hall	nc	Engl	ewo	boc
	Cliffs, New Jersey, 1995.	,	0		

- 4. Course material, "Micro Computer Application to Systems Analysis in Irrigation Water Management", CWR, Anna University, 1992.
- 5. Wagner H.M., "Principles of Operations Research with Application to Management Decisions", Prentice Hall, India, New Delhi, 1993.

COUR	SE OU	тсом	ES												
Upon	comple	etion o	of the	cours	se, st	udent	ts will	l be a	ble to)					
CO1	Define	Define the system concept and steps in systems approach for the water resources engineering.													
CO2	Apply the knowledge of optimisation techniques such as Linear programming and simplex method for reservoir operation.														
CO3	Explai	n singl	e and	multi	purpo	se res	servoi	r optir	nisati	on usir	ng dyn	amic p	rogramm	ning	
CO4	Develo operat	op the ing pol	simula licy	ation r	nodel	base	d on (deterr	ninisti	c and :	stocha	stic sir	nulation	for reser	voir
CO5	Apply the creative and advance optimisation techniques like goal programming, heuristic algorithm in the field of water planning and management.														
				Μ	APPI	NG O	F CO	s WI	TH PC	s ANE	D PSO	S			
				PRO	GRA	моц							PROG	RAM SP	ECIFIC
COs				I KO					1 03)				OUTC	OMES (I	PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	-	2	-	-	-	-	3	2	2	2
CO2	3	2	-	-	-	3	-	3	-	-	2	2	2	3	2
CO3	3	3	2	-	2	2	-	2	-	-	3	2	1	3	3
CO4	3	3	3	-	3	3	-	3	-	2	2	3	3	3 3	
CO5	3	3	3	3	3	3	-	3	2	-	3	3	3	3	3

CE1017	DESIGN OF PLATE AND SHELL STRUCTURES	L	Т	Ρ	С						
		3	0	0	3						
OBJECTIVES											
 To learn 	n the design of plate and shell and spatial structures										
UNIT I	THIN PLATES WITH SMALL DEFLECTION				9						
Laterally loaded thin plates - Governing differential equation, various boundary conditions.											
UNIT II RECTANGULAR PLATES											
Simply supported rectangular plates - Navier solution and Levy's method – Loading.											
UNIT III	JNIT III ANALYSIS OF THIN SHELLS										
Shells of revo	lution - Spherical dome, Conical shell and ellipsoid of revolution -	– Sl	hells								
of translation -	· Cylindrical shell and hyperbolic paraboloid - Classification of shells -	Турє	es of	C	:03						
shells - Structu	ral action										
UNIT IV	DESIGN OF SHELLS				9						
Spherical dome	e, conical shell and Cylindrical shell.			C	:04						
UNIT V	SPACE FRAMES				9						
Space Frames	G – Configuration – Node connector- Types – General principles of	f de	sign		0.05						
philosophy– Behaviour											
	TOTAL	.:4	5 PE	RIC	DS						
TEXT BOOKS											

- P.C.Varghese, Design of Reinforced Concrete Shells and Folded Plates, PHI Learning Private Limited, New Delhi, 2010.
- 2. R.Szilard, Theory and Analysis of Plates, Prentice Hall Inc., 1995.

- 1. Billington D.P. Thin Shell Concrete Structures, McGraw Hill, 1995.
- Chatterjee B.K. Theory and design of Concrete Shells, Oxford and IBH Publishing Co., New Delhi 1998.
- 3. N.Subramanian, Principles of Space Structures, Wheeler Publishing Co. 1999.
- 4. Maan Jawad, Theory and Design of Plate and Shell Structures, 1994.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Assess the strength of thin plates under different types of loads.
CO2	Analyze thin plates using Navier's method and Levy's method.
CO3	Analyze circular plates under axis - symmetric deflection.
CO4	Classify different types of shells and study their behavior.
CO5	Analyze space frame.

MAPPING OF COS WITH POS AND PSOS
COs				PROGI OUTC	OGRAM SPECIFIC										
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1	1	1	1	1	2	1	1	1	2	1	2
CO2	3	2	3	1	1	1	1	1	1	1	1	1	2	1	2
CO3	3	2	3	1	1	1	1	1	1	1	1	1	2	1	2
CO4	2	2	3	1	1	1	1	1	1	1	1	1	2	1	2
CO5	2	2	3	1	1	1	1	1	1	1	1	1	2	1	2

CE1018 PRESTRESSED CONCRETE STRUCTURES L T P											
		3	0	0	3						
OBJECTIVES											
 To under 	erstand the behaviour and performance of prestressed concrete structure	es.			_						
 To Con 	pare the behaviour of prestressed concrete members with that of the no	rma	l reir	nfor	ced						
concret	e structures.										
♦ To Und	erstand the performance of composite members.										
	the design of prestressed concrete structures.				_						
	INTRODUCTION				9						
Basic concept	s-Advantages-Materials required-Systems and methods of prestructions.	ess	ing–								
Analysis of se	ctions – Stress concept-Strength concept-Load balancing concept-E	:пес									
influencing deflections_Calculation of deflections _Short term and long-term deflections_I asses											
of prostross	ections-calculation of denections -Short term and long-term denections	-LO	sses								
	DESIGN FOR FLEXURE AND SHEAR				9						
Basic assumpt	ions for calculating flexural stresses–Permissible stresses in steel and c	conc	rete								
as peri.S.1343	Code-Design of sections of Type I and Type II post-tensioned a	nd	pre-								
tensioned bear	ns-Check for strength limit based on I.S. 1343 Code -Layout of cables	in p	ost-	C	02						
tensioned bea	ims-Location of wires in pre-tensioned beams -Design for snear	Da	ased								
011.5.1343000	e				1						
UNIT III	DEFLECTION AND DESIGN OF ANCHORAGE ZONE				9						
Factors influer	icing deflections–Short term deflections of uncracked members–Predi	ictio	n of								
long-term defl	ections due to creep and shrinkage-Check for serviceability limit	state	e of								
deflection. Det	ermination of anchorage zone stresses in post-tensioned beams by N	/lagi	nel's	С	03						
method, Guyor	n's method and IS1343code-design of anchorage zone reinforcement-	- Cł	neck								
for transfer bor	id length in pre-tensioned beams.										
UNIT IV	COMPOSITE BEAMS AND CONTINUOUS BEAMS				9						
Analysis and o	design of composite beams – Methods of achieving continuity in cor	ntinu	lous								
beams- Analy	rsis for secondary moments-Concordant cable and linear transfor	mat	ion–	С	04						
Calculation of s	stresses– Principles of design.										
UNIT V	MISCELLANEOUS STRUCTURES				9						
Design of tens	on and compression members- Tanks, pipes and poles - Partial prestre	əssi	ng –								
Definition, me	thods of achieving partial prestressing, merits and demerits of	pa	artial	С	05						
prestressing.											
	TOTAL	. : 4	5 PE	RIO	DS						
TEXT BOOKS											
1. Krishna	Raju N., "Prestressed concrete", 5th Edition, Tata McGraw Hill Company	/, N€	ew D	elhi,	,						

2. Pandit.G.S. and Gupta.S.P., "Prestressed Concrete", CBS Publishers and Distributers Pvt. Ltd, 2012.

REFERENCE BOOKS

2012

- 1. Rajagopalan.N, "Prestressed Concrete", Narosa Publishing House, 2002.
- 2. Dayaratnam.P., SarahP, Prestressed Concrete Structures, Seventh Edition, Oxford and IBH,

2017.

3.	Lin	T.Y. ar	nd Ne	d.H.B	urns,	"Desi	ign of	prest	resse	d Cono	crete S	structur	es", Thir	d Editior	n, Wiley
	India	a Pvt. I	Ltd., N	lewD	elhi,20	013.									
4.	Sinł	na.N.C	. And	d Ro	y.S.K.	. Fur	Idame	entals	of F	Prestre	ssed	Concre	ete, S.C	hand a	nd Co.
	Ltd.	,2011.													
5.	IS 1	343:19	980, C	Code o	of Pra	ctice	for Pr	estre	ssed (Concre	ete, Bu	reau o	f Indian	Standard	ls, New
	Delł	ni, 201	2												
COUR	OURSE OUTCOMES														
Upon	n completion of the course, students will be able to														
CO1	Design a prestressed concrete beam accounting for losses.														
CO2	Design for flexure and shear.														
CO3	Design the anchorage zone for post tensioned members and deflection in beams.														
CO4	Design composite members and continuous beams.														
CO5	Desigr	n water	tank	s, pipe	es and	d pole	s.								
				Μ	APPI	NG O	F CO	s WI	гн рс)s ANI	D PSO	S			
				PRO	GRA			MES					PROG	RAM SP	ECIFIC
COs				I KO					(1 0 3)				OUTC	OMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	-	-	2	-	-	1	1	-	1	3	-	3
CO2	3	2	3	-	-	1	-	-	1	1	-	1	3	-	3
CO3	3	2	3	-	-	1	-	-	1	1	-	1	3	-	3
CO4	2	2	3	-	-	1	-	-	1	1	-	1	3	-	3
CO5	2	2	3	-	-	1	-	-	1	1	-	1	3	-	3

CE1019	INDUSTRIAL STRUCTURES											
		3	0	0	3							
OBJECTIVES												
To learn th	he planning, layout, functional aspects of industries and design of majo	or sto	eel a	nd I	R.C							
structures needed for industries.												
UNIT I	PLANNING				9							
Classification	of industries and industrial structures - Site Planning and Selection -	Ext	erior									
and interior La	yout for Industries and buildings - Guidelines from factories act.				,01							
UNIT II	FUNCTIONAL REQUIREMENTS				9							
Lighting – Ventilation – Noise and Vibration control – Fire safety												
UNIT III	DESIGN OF STEEL STRUCTURES				9							
Pre-engineere	d and Mill buildings – Transmission Lines Towers – plate girders. Bunl	kers	and									
Silos – pipe/ca	able racks- Chimney.				,03							
UNIT IV	DESIGN OF R.C. STRUCTURES				9							
Corbels, Brack	kets and Nibs - Silos and bunkers –Chimney –Cooling Towers (Principles	onl	y)	C	:04							
UNIT V	PREFABRICATION				9							
Principles of p	refabrication and pre cast construction – Prestressed precast roof trusses	s – F	Floor									
slabs - Wall panels- Handling and erection stresses –joints in precast structures.												
TOTAL : 45 PERIC												
TEXT BOOKS												

1. Ramamrutham.S., Design of Reinforced Concrete Structures, Dhanpat Rai Publishing Company, 2007.

- 2. Varghese.P.C., Advanced Reinforced Concrete Design, PHI, Eastern Economy Editions, Second Edition, 2005.
- 3. Subramanian, N., Design of Steel Structures, Oxford University Press, 2008.

REFERENCE BOOKS

- 1. Henn W. Buildings for Industry, Vol.I and II, London Hill Books, 1995
- Handbook on Functional Requirements of Industrial buildings, SP32–1986, Bureau of Indian Standards, 1990.
- 3. Handbook of Industrial Lighting, Stanley L.Lyons, Butterworths, London.1981
- 4. Koncz, J., Manual of Precast Construction Vol. I and II, Bauverlay GMBH, 1971.
- Ramachandra and Virendra Gehlot, Design of steel structures –Vol. 2, Scientific Publishers, 2012.
- Handbook on Precast Construction, An Indian Concrete Institute Publication, 2016.9. IS Code 15284 (Part 1): 2003 "Design and Construction for Ground Improvement – Guidelines" (Stone Column), Bureau of Indian Standards, New Delhi.

COURSE OUTCOMES

CO1	Know the requirements of various industries and get an idea about the materials used and planning of
	various industrial components.

CO2	Acquire	e the fu	nction	al req	uireme	ents fo	r indu	strial s	structu	res.							
CO3	Design	special	steel	structu	ıres lil	ke bun	kers, s	silos, c	erane g	girders,	chimne	eys and	pre-engir	neered but	ildings.		
CO4	Design	specia	RC st	tructur	es like	e corbo	els, sil	os, bu	nkers,	chimne	eys, pla	tes and	shells.				
CO5	Understand the principles of prefabrication and prestressing																
	MAPPING OF COS WITH POS AND PSOS																
COs CO1				PRO				MES					PROG	RAM SP	ECIFIC		
													OUTC	OMES ((PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3		
CO1	3	2	3	-	-	2	1	1	-	-	-	2	3	-	2		
CO2	3	2	3	-	-	2	1	1	-	-	-	1	3	-	2		
CO3	3	2	3	-	-	2	1	1	-	-	-	2	3	-	2		
CO4	2	2	3	-	-	2	1	1	-	-	-	2	3 - 2				
CO5	2	2	3	-	-	2	1	1	-	-	-	1	3	-	2		

CE1020	MAINTENANCE, REPAIR AND REHABILITATION OF	L	Т	Ρ	С
	STRUCTURES				
		3	0	0	3
OBJECTIV	ES				
🛠 To	acquire the knowledge on quality of concrete, durability aspects, causes	of de	eterio	orati	on,
ass	essment of distressed structures, repairing of structures and demolition proc	edu	res		
UNIT I	MAINTENANCE AND REPAIR STRATIGES				9
Maintenand	e, Repair and Rehabilitation - Facets of Maintenance - Importance of Maint	enar	nce -		
Various as	pects of Inspection - Assessment procedure for evaluating a damaged st	ructu	ure -	С	01
causes of c	eterioration.				
UNIT II	STRENGTH AND DURABILITY OF CONCRETE				9
Quality ass	urance for concrete - Strength, Durability, of concrete - Cracks, different	nt ty	pes,	Τ	1
causes – E	ffects due to climate, temperature, Sustained elevated, Corrosion - Effects	of c	over	С	02
thickness.					
UNIT III	SPECIAL CONCRETES				9
Polymer co	ncrete - Sulphur infiltrated concrete - Fibre reinforced concrete - High	stre	ngth		
concrete -	High performance concrete - Vacuum concrete - Self compacting co	ncre	te –	C	03
Geopolyme	r concrete - Reactive powder concrete - Concrete made with industrial wast	es.			
	TECHNIQUES FOR REPAIR AND PROTECTION METHODS				9
Non-destru	ctive Testing Techniques, Epoxy injection, Shoring, Underpinning, C	Corro	sion		
protection	techniques – Corrosion inhibitors, Corrosion resistant steels, Coa	tings	s to	С	04
reinforceme	ent, cathodic protection.	0			
UNIT V	REPAIR, REHABILITATION AND RETROFITTING OF STRUCTURES	S		_	9
Strengthen	ng of Structural elements, Repair of structures distressed due to corrosion,	fire,		Τ	
leakage ar	d earthquake - Demolition techniques - Engineered demolition methods	s - (Case	С	05
studies.					
	ΤΟΤΑΙ	_ : 4	5 PE	RIO	DS
TEXT BOO	KS				
1. S	netty.M.S. Jain A K., Concrete Technology - Theory and Practice, S.Chand	and	Con	npar	יע.
Eiał	th Edition. 2019.	and	0011	.p.a.	.,
2. B	Vidivelli, Rehabilitation of Concrete Structures Standard Publishes Distribut	ion.1	lst e	ditio	n
20	09.				
REFEREN	CE BOOKS				
1. ⊢	and book on Seismic Retrofit of Buildings, CPWD and Indian Buildings Co	ongre	ess.	Nar	osa
P	ublishers, 2008.	5	,		
2. ⊢	and Book on "Repair and Rehabilitation of RCC Buildings" – Director	Ger	neral	wc	orks
C	PWD ,Govt of India , New Delhi – 2002				
3. P	C.Varghese, Maintenance Repair and Rehabilitation & Minor works of be	uildir	ng, P	rent	tice
F	all India Pvt Ltd 2014.				
4. R	. Dodge Woodson, Concrete Structures, Protection, Repair and	Re	habi	litati	on,
B	utterworth-Heinemann, Elsevier,New Delhi 2012				

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Know the importance of inspection and maintenance.

CO2 Study the Impacts of cracks, corrosion and climate on structures.

CO3	Know	about	High F	Perfor	manc	e con	crete.												
CO4	Under	stand t	he ma	aterial	s and	techr	niques	s need	ded fo	or repai	irs.								
CO5	Know the failures of the structures and demolition techniques.																		
MAPPING OF COS WITH POS AND PSOS																			
				PRO	GRA		ΙΤΟΟΙ	MES	(POs)				PROG	PROGRAM SPECIFIC					
COs CO1	OUTCOMES (PS										PSOs)								
	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3				
CO1	3	3	3	3	3	2	2	1	3	2	1	2	1	2	2				
CO2	3	3	3	2	3	2	2	1	2	2	2	1	2	3	2				
CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	1	2				
CO4	3	3	2	2	2	1	1	1	1	1	1	3	2 2 1						
CO5	3	3	3	3	2	1	2	1	3	1	1	3	3	2	2				

CE1021	POWERPLANT STRUCTURES	L	Т	Ρ	С						
		3	0	0	3						
OBJECTIVES											
 To gain 	knowledge about principles, planning, layout, structural requirements	and	anal	ysis	of						
power p	plants.										
UNIT I	FUNDAMENTALS OF POWER PLANTS				9						
Introduction –	Classification of Power Plants – Principles of Power Plant – Lay out c	of Po	wer								
Plant Building	 Selection of type of generation – Resources for power generation – 	Mac	hine	С	01						
foundation.											
UNIT II	HYDRO ELECTRIC POWER PLANTS				9						
Elements of h	vdro-electric power plants - Advantages and disadvantages of water	pow	/er -								
General and essential elements of Hydro electric Power Plant – Structural requirements –											
Selection of site	e for hydroelectric plant – Penstocks and surge Tanks in Power Station.										
UNIT III	THERMAL POWER PLANTS				9						
Planning, Analy	sis of thermal power plants – Layout – Ash handling – Dust collection –	Indu	iced								
draught and na	tural cooling towers – Air/water pollution by thermal power plants.			C	03						
UNIT IV	NUCLEAR POWER PLANTS			1	9						
General chara	cteristics of Nuclear Power Plants - Classification of reactors - Pre	ssur	ized								
Water Reacto	r, Boiling Water Reactor, Fusion Power Reactor, Heavy Water Re	eact	or -								
Selection criter	ia of materials for different systems - Containment structures - Nuclea	ar po	ower	C	04						
plant safety me	easures –Safety systems and support systems.										
UNIT V	NON CONVENTIONAL POWER PLANTS			-	9						
Types – Wind power plants – Selection of wind mill – Tidal power plants – Solar thermal power											
plants – Geoth	ermal power plants – Principles and essential features.			C	05						
TOTAL : 45 PERI											

TEXT	BOOKS											
1.	S.C. Sharma and G.R. Nagpal, Power Plant Engineering, Khanna Publishers, 2013.											
2.	Raja A.K, Amit Prakash Srivastava and Manish Dwivedi, Power Plant Engineering, New											
	Age International Publishers, 2013.											
REFERENCE BOOKS												
1.	R.K Rajput, Power Plant Engineering, Fifth Edition, 2016.											
2.	P.C Sharma, power Plant Engineering, S.K. Kataria & Sons; 2013.											
3.	Wei Tong, Wind Power Generation and Wind Turbine Design, WIT Press / Computational											
	Mechanics, First edition, 2010.											
4.	Dipak k Sarkar, Thermal Power plant: Design and Operation, Elsevier Publisher 2015.											
COUR	SEOUTCOMES											
Upon	completion of the course, students will be able to											
CO1	Explain the principles, layout and functional aspects of a power plant structure.											
CO2	Analyze and design the layout and components of hydroelectric power plant.											
CO3	Explain, analyze and design the layout and components of Thermal power plant.											
CO4	Explain the functioning of a nuclear power plant and design its components.											

CO5	Develo layout	op an ι and co	unders ompor	standi nents.	ng of	the va	arious	non-	conve	ntiona	l sourc	es of e	energy ar	nd desigi	n the
	MAPPING OF COS WITH POS AND PSOS														
COs		PROGRAM OUTCOMES (POs) PROGRAM SPECIFI OUTCOMES (PSOs													
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	-	-	-	1	1	2	-	-	1	3	-	2
CO2	3	2	3	-	-	-	1	1	1	-	-	1	3	-	2
CO3	3	2	3	-	-	-	1	1	1	-	-	1	3	-	2
CO4	2	2	3	-	-	-	1	1	1	-	-	1	3	-	2
CO5	2	2	3	-	-	-	1	1	1	-	-	1	3	-	2

CE1022	PREFABRICATED STRUCTURES	L	Т	Ρ	С					
		3	0	0	3					
OBJECTIVES										
🛠 To und	derstand the principles of prefabrication, behaviour and design o	f pr	refab	rica	ted					
compor	nents and structural connections.									
 To appi 	eciate modular construction and industrialised construction									
UNIT I	INTRODUCTION				9					
Need for prefa	abrication - Principles- Materials - Modular co-ordination – Standardi	zatio	on –		-04					
Systems Production – Transportation – Erection - Disuniting of Structures.										
UNIT II	PREFABRICATED COMPONENTS				9					
Behavior of structural components-Large panel constructions-Construction of roof, floor slabs										
and Wall panels–Columns–Shear walls.										
UNIT III	DESIGN PRINCIPLES				9					
Design of Str	uctural components-Beam, Column and Corbel-Stress limitations-I	lanc	dling							
without crackin	g, handling with controlled cracking–Design for stripping forces.				.03					
UNIT IV	JOINTS IN STRUCTURAL MEMBERS			_	9					
Joints for diffe	erent structural connections-Beam to Column, Beam to Beam, Co	lum	n to							
Column, Colun	nn to Foundation, Connections between wall panels, Connections betwe	en f	floor	С	04					
panels-Dimens	ions and detailing–Design of expansion joints-Jointing Materials.									
UNIT V	DESIGN FOR EARTHQUAKES AND CYCLONES				9					
Progressive co	ollapse-Codal provisions-Equivalent design loads for considering a	bno	rmal							
effects such as earthquakes, cyclones etcImportance of avoidance of progressive collapse.										
	TOTAL	. : 4	5 PE	RIO	DS					
TEXT BOOKS										

- 1. Hubert Bachmann and Alfred Steinle, Precast Concrete Structures, 2012.
- 2. Laszlo Mokk, Prefabricated Concrete for Industrial and Public Structures, Akademiai Kiado, Budapest, 1964.

- 1. PCI Design Hand Book, 6th Edition, 2004.
- 2. Handbook on Precast Concrete for Buildings, ICI Bulletin 02, First Edition, 2016.
- 3. A.S.G. Bruggeling and G.F.Huyghe, Prefabrication with concrete, Netherlands: A.A.Balkema Publishers, 1991.
- 4. Glover C.W, Structural Precast Concrete, Asia Publishing House, 1965.

COURSE OUTCOMES

CO1	Understand the principles of modular coordination
CO2	Know the construction of roof and floors
CO3	Design for stripping forces
CO4	Identify the different types of connections between structural members
CO5	Understand the concept of progressive collapse

MAPPING OF COs WITH POs AND PSOs

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	-	-	2	-	-	1	1	-	1	3	-	2
CO2	3	2	3	-	-	1	-	-	1	1	-	1	3	-	2
CO3	3	2	3	-	-	1	-	-	1	1	-	1	3	-	2
CO4	2	2	3	-	-	1	-	-	1	1	-	1	3	-	2
CO5	2	2	3	-	-	1	-	-	1	1	-	1	3	-	2

CE1023	TALL STRUCTURES	L	Τ	Ρ	С
		3	0	0	3
OBJECTIVES					
 To und 	erstand the design philosophy of tall buildings, the loading and behavio	our	of sti	uctu	ural
system	S.				
UNIT I	DESIGN CRITERIA AND MATERIALS				9
Design Philoso	ophy - Modern concepts – Materials used - High Performance Concre	te, F	Fibre		-
Reinforced Co	ncrete, Light weight concrete, Self-Compacting Concrete, High streng	th s	teel,	C	;01
Composites.					
UNIT II	LOADING				9
Gravity Loadir	ng – Dead load, Live load – Live load reduction techniques, Impa	act I	oad,		
Construction I	oad, Sequential loading. Wind Loading – Static and Dynamic A	ppro	ach,		<u>،</u>
Analytical met	hod, Wind Tunnel Experimental methods. Earthquake Loading – Eo	quiva	alent		02
lateral Load an	alysis, Dynamic Analysis, Combination of Loads.				
UNIT III	BEHAVIOUR OF STRUCTURAL SYSTEMS				9
Factors affecti	ng the growth, height and structural form, Behaviour of Braced frame	es, F	Rigid		
Frames, in fille	ed frames, Shear walls, Coupled Shear walls, Wall – Frames, Tub	ular	and	C	;03
Outrigger – Hy	brid systems				
UNIT IV	ANALYSIS				9
Modeling for a	pproximate analysis, accurate analysis and reduction techniques, An	alysi	is of		۰ <u>۰</u> ۷
structures as a	n integral unit, Analysis for drift and twist. Computerized 3D analysis.				-04
UNIT V	DESIGN PARAMETERS				9
Design for diffe	erential movement, Creep and Shrinkage effects, Temperature Effects ar	nd Fi	ire		·05
Resistance, Sta	ability of Tall Structures - $P\Delta$ Effects, Buckling analysis of Tall Buildings.				.00
	TOTAL	.:4	5 PE	RIO	DS
•					

1.	Bryan Stafford Smith and Alex Coull, Tall Building Structures, Analysis and Design, John
	Wiley and Sons, Inc., 2011.

2. Taranath B.S, Structural Analysis and Design of Tall Buildings: Steel and Composite Construction, McGraw Hill, 2011.

REFERENCE BOOKS

- 1. Lin T.Y. and Burry D.Stotes, Structural Concepts and Systems for Architects and Engineers, John Wiley, 1994.
- 2. Lynn S.Beedle, Advances in Tall Buildings, CBS Publishers and Distributors, Delhi, 1996.
- 3. Wolfgang Schuler, High Rise Building Structures, John Wiley & Sons, New York, 1986.
- 4. Kolousek V, Pimer M, Fischer O and Naprstek J, Wind effects on Civil Engineering Structures. Elsevier Publications.1984.

COURSE OUTCOMES

CO1	Explain the design aspects and the various innovative materials which can be used for the
CO1	construction of tall buildings
CO2	Apply the knowledge of engineering fundamentals to characterize various types of loading

	which could be considered for the analysis of tall building.														
CO3	Identify	y vario	ous st	ructu	ral sy	stems	s, the	ir beł	navior	and	perforr	nance	under o	lifferent	loading
000	conditi	ons.													
CO4	Analyze the structures as an integral unit for drift and twist.														
CO5	Desigr	Design tall structures under different conditions like stability considerations, creep, shrinkage,													
000	and temperature and fire resistance.														
MAPPING OF COS WITH POS AND PSOS															
				PROGRAM SPECIFIC											
COs															
COs				I NO					1 03)				OUTC	OMES (PSOs)
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	OUTC PSO1	OMES (PSOs) PSO3
COs CO1	PO1	PO2	PO3	PO4	PO5	PO6	P07 3	PO8	PO9 1	PO10	PO11	PO12	OUTC PSO1	OMES (1 PSO2 2	PSOs) PSO3 2
COs CO1 CO2	PO1 1 3	PO2 1 3	PO3 1 3	PO4 1 3	PO5 1 3	PO6 1 3	PO7 3	PO8 1 3	PO9 1	PO10 1 1	PO11 1 1	PO12 1 1	OUTC PSO1 1 2	OMES (1 PSO2 2 2	PSOs) PSO3 2 2
COs C01 C02 C03	P01 1 3 1	PO2 1 3 2	PO3 1 3 2	PO4 1 3 1	PO5 1 3 2	PO6 1 3 1	PO7 3 1 1	PO8 1 3 1	PO9 1 1 1	PO10 1 1 1	PO11 1 1 1	PO12 1 1 1	OUTC PSO1 1 2 3	OMES (1 PSO2 2 2 1	PSOs) PSO3 2 2 3
COs C01 C02 C03 C04	P01 1 3 1 1 1 1 1	PO2 1 3 2 3	PO3 1 3 2 2	PO4 1 3 1 1	P05 1 3 2 3	PO6 1 3 1 2	P07 3 1 1 1	PO8 1 3 1 1 1	PO9 1 1 1 2	PO10 1 1 1 1 1 1	PO11 1 1 1 1 1 1	PO12 1 1 1 1 1	OUTC PSO1 1 2 3 3	OMES (1 PSO2 2 2 1 3	PSOs) PSO3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 3 2 3 2 3 3 2 3 3 2 3

CE1024	ASEISMIC DESIGN OF STRUCTURES	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
To und	erstand the behaviour of structures under dynamic, earthquake loading	and	des	ign	the
structur	es as earthquake resistant as per codal provisions.				1
UNITI	SINGLE DEGREE OF FREEDOM SYSTEM				9
Definition of d	egree of freedom - Idealization of structure as Single Degree of F	ree	dom		
(SDOF) system	n – Formulation of equation of motion for various SDOF system – D'Al	emt	perts	С	:01
Principles - Eff	ect of damping – Free and forced vibration of damped and undamped st	ruct	ures		01
– Response to	harmonic forces and periodic loading.				
UNIT II	MULTI DEGREE OF FREEDOM SYSTEM				9
Formulation of	equation of motion for multidegree of freedom (MDOF) system - Evalu	uatic	on of		
natural freque	ncies and modes – Eigen values and Eigen vectors – Orthogona	lity	and	6	·
normality princ	iples – Response to free and forced vibration of undamped and damped	d MI	DOF		02
systems – Moc	al superposition methods				
UNIT III	INTRODUCTION TO EARTHQUAKE ENGINEERING				9
Elements of Er	ngineering Seismology – Definitions, Introduction to Seismic hazard, Ear	thqu	lake		1
phenomenon	- Seismotectonics - Seismic Instrumentation - Characteristics of	St	rong	С	:03
Earthquake mo	tion – Estimation of Earthquake Parameters – Soil Structure Interaction.				
UNIT IV	EARTHQUAKE EFFECTS ON STRUCTURES				9
Effect of eartho	uake on different types of structures – Behaviour of RCC, Steel and pres	stres	ssed		
Concrete Stru	ctures under earthquake loading – Pinching Effect – Bouchinger E	ffec	ts –		
Liquefaction of	soil - Response Spectra - Causes of damage - Lessons learnt fro	om	past		.04
earthquakes.					
UNIT V	CONCEPTS OF EARTHQUAKE RESISTANT DESIGN			1	9
Planning consi	derations and Architectural concepts – Evaluation of Earthquake forces	– S	tatic		1
load method,	Response spectrum method – Guidelines for Earthquake resistant d	lesig	gn –		
Earthquake re	sistant design of masonry and RCC buildings - Design considera	atior	is –	C	.05
Guidelines– De	esign and detailing				
	TOTAL	.:4	5 PE	RIO	DS
L					
I EXI BOOKS					
1. Mario	Paz, Structural Dynamics – Theory and Computations, Fifth Edition 2n	id pr	intin	g, C	BS

2. Agarwal.P and Shrikhande.M. Earthquake Resistant Design of Structures, Prentice Hall of India Pvt. Ltd. 2011.

REFERENCE BOOKS

- 1. Clough.R.W, and Penzien.J, Dynamics of Structures, Second Edition, McGraw Hill International Edition, 1995.138
- 2. Minoru Wakabayashi, Design of Earthquake Resistant Buildings, Mc Graw Hill Book Company, 1986.

3.	Anil	КC	hopra	a, Dy	namio	cs of	stru	cture	s –	Theory	/ and	appli	cations	to Eart	hquake
	Eng	ineerin	ng,Pre	entice	Hall I	nc., 2	007.								
4.	Мос	orthy.C	.V.R.,	Earth	nquak	e Tips	s, NIC	EE, I	IT Kar	npur,20	002.				
5.	IS 4	326: 2	013 E	arthq	uake	Resis	tant D	Desigr	n And	Const	ruction	Of Bu	ildings –	Code Of	F
	Prac	ctice													
6.	IS 1	893: 2	2016	Criter	ia Fo	r Ear	thqua	ke Re	esista	nt Des	sign O	f Struc	tures –	Part 1 C	General
	Provision And Buildings.														
7.	IS 13920:2016 Ductile Design And Detailing Of Reinforced Concrete Structures Subjected														bjected
	To Seismic Forces – Code Of Practice.														
COUR	COURSE OUTCOMES														
Upon completion of the course, students will be able to															
004	Apply the knowledge of science and engineering fundamentals to idealize and														
CO1	formulate the equations of motion for SDOF system														
	Develop the equations of motion for MDOF system and to evaluate the natural														
CO2	frequencies and mode shapes.														
	Explain the elements of engineering seismology, characteristics of earthquake and seismic														
CO3	instrumentation.														
	To ide	entify	the v	ariou	s cau	ises	and	effect	s of	earth	quakes	s on s	structure	s due t	o past
CO4	earthq	uakes.													
	To ana	alyse t	he str	ucture	es su	bjecte	d to	dynar	nic lo	ading	and to	desig	n for seis	smic load	ding as
CO5	per co	dal pro	visior	IS.				-		· ·		C			·
	•	•		М	APPI	NG O	F CO	s WI1	TH PC	s ANI) PSO	S			
													PROG		ECIFIC
COs				PRO	GRA	MOU	тсог	MES ((POs)				OUTC	OMES (I	PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	3	2	1	3	1	-	1	3	2	1
CO2	3	3	3	2	2	3	2	1	3	1	-	1	3	2	1
002	2		1	-	~	2	-	י ר	1			1	2	2	1
03	3			1	-	3		2		-	-		3	2	
CO4	3	2	3	2	2	3	2	3	3	3	2	1	3	2	1
CO5	3	3	3	3	3	3	2	3	3	3	2	1	3	2	1

CE1025	DISASTER MANAGEMENT	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
🛠 Top	provide students an exposure to disasters, their significance and types.				
🛠 To e	ensure that students begin to understand the relationship between vulnera	ability	/,		
disa	sters, disaster prevention and risk reduction				
🛠 To (ain a preliminary understanding of approaches of Disaster Risk Reductio	n (D	RR)		
🛠 To e	enhance awareness of institutional processes in the country				
🛠 To d	develop rudimentary ability to respond to their surroundings with potential				
disa	ster response in areas where they live, with due sensitivity				
UNIT I	INTRODUCTION TO DISASTERS				9
Definition: Dis	aster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of dis	aste	rs –		
Earthquake, I	andslide, Flood, Drought, Fire etc – Classification, Causes, Impacts i	nclu	ding		
social, econo	mic, political, environmental, health, psychosocial, etc Differential imp	bacts	s- in		
terms of cast	e, class, gender, age, location, disability – Global trends in disasters	s: ur	ban		.01
disasters, par	demics, complex emergencies, Climate change- Dos and Don'ts during	var	ious		
types of Disas	ters.				
UNIT II	APPROACHES TO DISASTER RISK REDUCTION				9
Disaster cycle	- Phases, Culture of safety, prevention, mitigation and preparedness co	mmı	unity		
based DRR,	Structural- nonstructural measures, Roles and responsibilities of- con	nmu	nity,		
Panchayati R	aj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and othe	er sta	ake-		~~~
holders- Instit	utional Processess and Framework at State and Central Level- State	Disa	ster		,02
Management	Authority(SDMA) - Early Warning System - Advisories from App	oropi	riate		
Agencies.					
UNIT III	INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMEN	١T		1	9
Factors affect	ing Vulnerabilities, differential impacts, impact of Development projects	such	n as		
dams, emban	kments, changes in Land-use etc Climate Change Adaptation- IPCC S	Scen	ario		·~~
and Scenario	s in the context of India – Relevance of indigenous knowledge, app	oropi	riate		.03
technology ar	d local resources.				
UNIT IV	DISASTER RISK MANAGEMENT IN INDIA				9
Hazard and	Vulnerability profile of India, Components of Disaster Relief: Water	r, Fo	ood,		
Sanitation, S	helter, Health, Waste Management, Institutional arrangements (M	itigat	tion,		
Response an	d Preparedness, Disaster Management Act and Policy – Other related	polic	cies,		-
plans, progra	nmes and legislation – Role of GIS and Information Technology Compo	není	ts in		,04
Preparedness	, Risk Assessment, Response and Recovery Phases of Disaster -	Disa	ster		
Damage Asse	essment.				
UNIT V	DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES	٩ND	FIEI	D	9
	WORKS				
Landslide Ha	zard Zonation: Case Studies, Earthquake Vulnerability Assessment of E	3uild	ings		
and Infrastruc	ture: Case Studies, Drought Assessment: Case Studies, Coastal Flooding	g: St	orm		
Surge Asses	sment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fir	e: C	ase	C	:05
Studies, Man	Made disasters: Case Studies, Space Based Inputs for Disaster Mitiga	tion	and		
Management	and field works related to disaster management.				
	ΤΟΤΑΙ	· 4!	5 PFI		DS

1. Sing 978 2. Tus 201 3. Gur	ghal J 3-9380 shar B 2. ISI ota Ar	I.P. Di)38642 hattac 3N-10	sastei 23 charya	r Man	agem	ent, L	.axmi	Publi	cation	s, 201	0. ISB	N-10: §	380386	427 ISBN	N-13:						
978 2. Tus 201 3. Gur	8-9380 shar B 2. ISI ota Ar)38642 hattac 3N-10	23 charya					1. Singhal J.P. Disaster Management, Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13:													
2. Tus 201 3. Gur	shar B 2. ISI ota Ar	hattac 3N-10	harya		978-9380386423																
201 3 Gur	2. ISE ota Ar	3N-10	Tushar Bhattacharya, Disaster Science and Management, McGraw Hill India Education Pvt. Ltd.,																		
3 Gur	ota Ar	.012. ISBN-10: 1259007367, ISBN-13: 978-1259007361]																			
0. 00	Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM,																				
Nev	New Delhi, 2011																				
4. Kap	Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New																				
Dell	Delhi, 2010.																				
REFERENCE BOOKS																					
1. Gov	vt. of I	ndia: I	Disast	ter Ma	anage	ment	Act,	Gove	rnmei	nt of In	dia, Ne	ew Del	hi, 2005								
2. Gov	vernm	ent of	India	, Natio	onal E	Disast	er Ma	inage	ment	Policy,	2009.										
COURSE		ГСОМ	ES																		
Upon completion of the course, students will be able to																					
CO1 Differentiate the types of disasters, causes and their impact on environment and society																					
CO2 As	Assess vulnerability and various methods of risk reduction measures as well as mitigation																				
CO3 er	nhanc	e awa	irenes	ss of i	nstitut	ional	proce	esses	in the	count	ry										
co4 de	evelop	o ru	dimer	ntary	abil	ity 1	to r	espor	nd t	o th	eir s	urroun	dings	with p	otential						
di	isaste	r resp	onse i	in are	as wh	ere th	ney liv	ve, wit	h due	sensit	tivity										
	raw t	he ha	zard a	and v	ulnera	ability	profi	le of	India,	Scen	arios i	n the	Indian c	ontext, D	Disaster						
da	amag	e asse	essme	ent an	d mar	nagen	nent.														
				Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	S									
							тоо						PROG	RAM SP	ECIFIC						
COs				PRO	GRA			VIE3 (PUS)				OUTC	OMES (I	PSOs)						
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3						
CO1	3	2	0	0	0	2	2	1	3	0	1	2	0	0	2						
CO2	3	2	0	0	0	2	2	1	2	0	2	1	0	0	2						
CO3	3	2	0	0	0	1	2	1	2	0	1	2	0	0	2						
CO4	3	2	0	0	0	1	1	1	1	0	1	3	0	0	1						
CO5	3	2	0	0	0	1	2	1	3	0	1	3	0	0	2						

CE1026	GEO-ENVIRONMENTAL ENGINEERING	L	Т	Ρ	С				
		3	0	0	3				
OBJECTIVES									
The stu	ident acquires the knowledge on the Geotechnical engineering proble	ms	asso	ociat	ted				
with sc	il contamination, safe disposal of waste and remediate the contami	nate	ed so	oils	by				
differen	t techniques thereby protecting environment.								
UNITI	GENERATION OF WASTES AND CONSQUENCES OF SOIL POLLU	ΓΙΟΙ	1		9				
Introduction to	Geo environmental engineering - Environmental cycle - Sources, pro	oduc	tion						
and classification of waste - Causes of soil pollution - Factors governing soil pollution									
interaction clay	minerals - Failures of foundation due to waste movement.								
UNIT II	SITE SELECTION AND SAFE DISPOSAL OF WASTE				9				
Safe disposal	of waste - Site selection for landfills - Characterization of land fill si	tes	and						
waste – Risk	assessment - Stability of landfills - Current practice of waste dis	posa	al –		<u></u>				
Monitoring faci	lities – Passive containment system – Application of geosynthetics in soli	d wa	aste		02				
management -	Rigid or flexible liners.								
UNIT III	TRANSPORT OF CONTAMINANTS				9				
Contaminant tr	ansport in sub surface – Advection, Diffusion, Dispersion – Governing ec	quati	ions						
 Contaminant 	transformation – Sorption – Biodegradation – Ion exchange – Precipi	tatic	on –	С	O 3				
Hydrological co	onsideration in land fill design – Ground water pollution.								
UNIT IV	WASTE STABILIZATION				9				
Stabilization -	Solidification of wastes - Micro and macro encapsulation - Abs	sorpt	tion,						
Adsorption, Pre	ecipitation – Detoxification – Mechanism of stabilization – Organic and ir	orga	anic	С	04				
stabilization - I	Jtilization of solid waste for soil improvement.								
UNIT V	REMEDIATION OF CONTAMINATED SOILS				9				
Exsitu and insi	tu remediation-Solidification, bio-remediation, incineration, soil washing,	, ele	ctro		<u> </u>				
kinetics, soil he	eating, vetrification, bio-venting.				05				
	TOTAL	: 45	5 PEF	RIO	DS				
TEXT BOOKS									

1.	Manoj Datta,"	Waste Disposal in	Engineered landfills",	, Narosa Publishing House,	1997.
----	---------------	-------------------	------------------------	----------------------------	-------

2. Manoj Datta, B.P. Parida, B.K. Guha, "Industrial Solid Waste Management and Landfilling Practice", Narosa Publishing House, 1999.

REFERENCE BOOKS

- 1. Hari D. Sharma and Krishna R. Reddy, "Geo-Environmental Engineering" –John Wiley and Sons, INC, USA, 2004.
- 2. Daniel B.E., "Geotechnical Practice for waste disposal", Chapman & Hall, London 1993.
- 3. Westlake, K, "Landfill Waste pollution and Control", Albion Publishing Ltd., England, 1995.
- 4. Wentz, C.A., "Hazardous Waste Management", McGraw Hill, Singapore, 1989.

COURSE OUTCOMES

CO1	Understand basic knowledge of concepts and principles of Geo-environmental Engineering.
CO2	Select site for safe disposal of waste.

CO3	Aware of soil stabilization by utilizing solid waste.														
CO4	Assess contan	Assess the contamination in the soil and to select suitable remediation methods based on contamination.													
CO5	Prepar	repare the suitable disposal system for particular waste.													
		MAPPING OF COS WITH POS AND PSOS													
COs		PROGRAM OUTCOMES (POs) PROGRAM SPECIFIC OUTCOMES (PSOs)													
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1	1	1	3	1	3	1	2	3	3	3	2
CO2	3	1	3	3	2	3	3	1	3	1	1	3	2	2	3
CO3	3	2	2	3	2	3	3	1	3	1	1	3	2	2	3
CO4	2	1	3	3	3	3	3	1	3	1	1	3	2	2	3
CO5	3	1	3	2	3	3	3	1	3	1	1	3	2	3	2

CE1027	GROUND IMPROVEMENT TECHNIQUES	L	Т	Ρ	С				
		3	0	0	3				
OBJECTIVES									
 Students 	will be exposed to various problems associated with soil deposits	and	meth	ods	to				
evaluate	them. The different techniques will be taught to them to improve the c	hara	cteris	stics	s of				
difficult	soils as well as design techniques required to implement various groun	nd ir	nprov	vem	ent				
methods.									
UNIT I	PROBLEMATIC SOIL AND IMPROVEMENT TECHNIQUES				9				
Role of ground	improvement in foundation engineering - Methods of ground improv	eme	nt –						
Geotechnical pr	oblems in alluvial, lateritic and black cotton soils – Selection of suitable	e gro	ound	С	01				
improvement te	chniques based on soil conditions.								
UNIT II	DEWATERING				9				
Dewatering Tee	chniques - Well points – Vacuum and electroosmotic methods – S	Seep	bage						
analysis for two	o dimensional flow for fully and partially penetrated slots in homo	gene	eous	С	02				
deposits – Desig	gn for simple cases.								
UNIT III	INSITU TREATMENT OF COHESIONLESS AND COHESIVE SOILS				9				
In-situ densific	ation of cohesionless soils – Shallow as deep compaction –	Dyna	amic						
compaction - V	ibroflotation, Sand compaction piles and deep compaction. Consolic	datio	n of						
cohesionless so	oils -Preloading with sand drains, and fabric drains, Stabilization of	soft	clay	С	03				
ground using st	one columns and Lime piles-Installation techniques – Simple design -	Rela	ative						
merits of above	methods and their limitations.								
UNIT IV	EARTH REINFORCEMENT				9				
Concept of rei	nforcement – Types of reinforcement material – Reinforced earth	n Wa	all —						
Mechanism - S	Simple design - Applications of reinforced earth; Functions of Geote	extile	s in	С	04				
filtration, drainag	ge, separation, road works and containment applications.								
UNIT V	GROUTING TECHNIQUES				9				
Types of grouts	- Grouting equipment's and machinery - Injection methods - Grout m	onito	oring	C	05				
-Stabilization w	ith cement, lime and chemicals – Stabilization of expansive soil.								
	TOTAL : 45 PERIODS								

1. Purushothama Raj. P, "Ground Improvement Techniques", Lakshmi Publications, 2nd Edition, 2016.

2. Koerner, R.M. "Construction and Geotechnical Methods in Foundation Engineering",McGraw Hill, 1994.

3. Nihar Ranjan Patra, "Ground Improvement Techniques", Vikas Publishing House, First Edition, 2012.

4. Mittal.S, "An Introduction to Ground Improvement Engineering", Medtech Publisher, First Edition, 2013.

REFERENCE BOOKS

1. Moseley, M.P., "Ground Improvement" Blockie Academic and Professional, 1992.

2. Moseley, M.P and Kirsch. K., 'Ground Improvement", Spon Press, Taylor and Francis Group, London, 2nd Edition, 2004.

Jones C.J.F.P. "Earth Reinforcement and Soil Structure", Thomas Telford Publishing,1996.
 Winterkorn, H.F. and Fang, H.Y. "Foundation Engineering Hand Book". Van Nostrand Reinhold, 1994.

5. Das, B.M., "Principles of Foundation Engineering" (seventh edition), Cengage learning, 2010.

6. Coduto, D.P., "Geotechnical Engineering – Principles and Practices", Prentice Hall of India Pvt.Ltd. New Delhi, 2011.

7. Koerner, R.M., "Designing with Geosynthetics" (Sixth Edition), Xlibris Corporation, U.S.A, 2012.

8. Relevant IS Codes.

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Gain knowledge on methods and selection of ground improvement techniques.
- CO2 Acquire dewatering techniques and design for simple cases.
- CO3 Get knowledge on in-situ treatment of cohesionless and cohesive soils.

CO4 Get knowledge on in-situ treatment of cohesionless and cohesive soils.

CO5 Get to know types of grouts and grouting technique.

MAPPING OF COs WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	-	3	1	2	-	-	-	3	3	-	2
CO2	3	3	2	2	-	3	1	2	-	-	-	3	3	-	2
CO3	2	3	3	2	-	3	1	2	-	-	-	3	3	-	2
CO4	3	2	3	3	-	3	1	2	-	-	-	3	3	-	2
CO5	3	3	2	2	-	3	1	2	-	-	-	3	3	-	2

CE1028	SOIL DYNAMICS AND MACHINE FOUNDATIONS	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
 To under 	erstand the basics of dynamics - dynamic behaviour of soils - effects of	dyna	amic		
loads a	nd the various design methods.				
UNIT I	THEORY OF VIBRATION				9
Nature dynami	c loads – Vibrations of single degree freedom system – Free vibrations	of sp	oring		
 mass syster 	ms – Forced vibrations – Viscous damping - Transmissibility – Princ	ciple	s of	С	01
vibration meas	uring instruments – Effect of Transient and Pulsating loads				
UNIT II	WAVE PROPAGATION				9
Elastic waves i	n rods of infinite length – Longitudinal and Torsional – Effect of end con	ditio	ns –		
Longitudinal a	nd torsional vibrations of rods of finite length – Wave Propagation in	infi	nite,		
homogeneous	isotropic and elastic medium - Wave propagation in elastic half space -	- Ту	bical	С	02
values of com	pression wave and shear wave velocity - Wave propagation due to	Mac	hine		
foundation – S	urface wave – Typical values – Particle movements and velocity.				
UNIT III	DYNAMIC PROPERTIES OF SOILS				9
Dynamic stres	s – Strain characteristics – Principles of measuring dynamic prop	ertie	es —		
Laboratory Teo	chniques – Field tests – Factors affecting dynamic properties – Typical	valu	es –	С	03
Dynamic beari	ng capacity – Dynamic earth pressure.				
UNIT IV	FOUNDATION FOR DIFFERENT TYPES OF MACHINES				9
Types of mach	nines and foundation – General requirements – Modes of vibration o	fa	rigid		
foundation – M	lethod of analysis – Linear elastic weightless spring method – Elastic ha	alf sp	ace	C	04
method – Ana	log Method – Design of block foundation – Special consideration fo	r ro	tary,		07
Impact type of	machines – Codal Provisions.				
UNIT V	INFLUENCE OF VIBRATION AND REMEDIATION				9
Mechanism of	Liquefaction – Influencing factors – Evaluation of Liquefaction potential b	ase	d on		
SPT-Force Iso	lation – Motion Isolation – Use of spring and damping materials – γ	Vibra	ation	C	05
control of exist	ing machine foundation – Screening of vibration – Open trenches – Pile	Bar	riers	Ŭ	00
 – Salient const 	ruction aspects of machine Foundations.				
	TOTAL	.:4	5 PE	RIO	DS

- Swamisaran, "Soil Dynamics and Machine Foundations", Galgotia Publications Pvt.Ltd. (Second Edition) 2006, (Reprint 2010), New Delhi-110002
- 2. Srinivasulu. P, and Vaidyanathan. C. V, "Handbook of Machine Foundations", Tata McGraw-Hill, 2007

REFERENCE BOOKS

- 1. Kamaswara Rao., "Vibration Analysis and Foundation Dynamics", Wheeler Publishing, New Delhi, 1998.
- Kameswara Rao., "Dynamics Soil Tests and Applications", Wheeler Publishing, New Delhi, 2003.
- 3. Moore, P.J., "Analysis and Design of Foundation for Vibration", Oxford and IBH, 2005
- 4. Steven L. Kramer, "Geotechnical Earthquake Engineering", Prentice Hall, 2014.

COURSE OUTCOMES

Upon	comple	etion c	of the	cour	se, st	uden	ts wil	l be a	ble to)					
CO1	Have t	lave the basic knowledge about the theory of vibration.													
CO2	Unders	Inderstand the different types of waves and its behaviour.													
CO3	Have e	lave enough knowledge about various laboratory and field tests to determine													
CO4	Assess contan	Assess the contamination in the soil and to select suitable remediation methods based on contamination.													
CO5	Asses: vibratio	Assess the influence of vibrations and selection of remediation methods based on the nature of vibration, properties and behaviour of soil.													
				Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	S			
				PRC	GRA	MOU	тсо	MES	(POs)				PROG	RAM SP	ECIFIC
COs									()				OUTC	OMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	1	1	3	1	3	1	1	2	1	2	2
CO2	3	3	1	1	1	1	3	1	3	1	1	1	2	3	2
CO3	3	2	3	2	3	1	3	1	3	1	1	2	2	1	2
CO4	3	3	3	1	1	1	3	1	3	1	1	3	2	2	1

CE1029	ROCK MECHANICS	L	Т	Ρ	С				
		3	0	0	3				
OBJECTIVES									
🔹 To impa	art knowledge on fundamentals of rock mechanics and its application ir	n so	lving	sim	ple				
problem	ns associated with rock slopes and underground openings.								
 Student 	gains the knowledge on the mechanics of rock and its applications	in u	Inder	grou	und				
structur	es and rock slope stability analysis.								
UNIT I	CLASSIFICATION AND INDEX PROPERTIES OF ROCKS				9				
Geological clas	sification – Index properties of rock systems – Classification of rock ma	asse	s for	C	· O 1				
engineering pu	rpose – Rock Mass Rating and Q System.								
UNIT II	ROCK STRENGTH AND FAILURE CRITERIA			•	9				
Modes of rock failure – Strength of rock – Laboratory measurement of shear, tensile and									
compressive s	trength. Stress - strain behaviour of rock under compression – Mohr - C	Coul	omb	С	;02				
failure criteria a	and empirical criteria.								
UNIT III	INITIAL STRESSES AND THEIR MEASUREMENTS			•	9				
Estimation of in	nitial stresses in rocks – influence of joints and their orientation in distrib	outio	on of						
stresses – mea	asurements of in-situ stresses – Hydraulic fracturing – Flat jack method) – t	Over	С	;O3				
coring method.									
UNIT IV	APPLICATION OF ROCK MECHANICS IN ENGINEERING				9				
Simple engine	ering application – Underground openings – Rock slopes – Foundati	ons	and	C	·01				
mining subside	nce.				.04				
UNIT V	ROCK STABILISATION				9				
Introduction –	Rock support and Rock reinforcement – Principles – Support reaction of	curv	es –	6	·05				
Shotcreting.					05				
	TOTAL	.:4	5 PE	RIO	DS				

- 1. Goodman, P.E. "Introduction to Rock Mechanics", John Wiley and Sons, 1999.
- Ramamurthy. T., "Engineering in Rocks for Slopes, Foundation and Tunnels: (Third Edition), PHI Learning Private Limited, New Delhi, 2014.

REFERENCE BOOKS

- 1. Brown, E.T. "Rock Characterization Testing and Monitoring". Pergaman Press 1991.
- Arogyaswamy, R.N.P., Geotechnical Application in Civil Engineering", Oxford and IBH, 1991.
- 3. Hook E.and Bray J., Rock slope Engineering, Institute of Mining and Metallurgy", U.K.2004.
- 4. Brady, B.H.G. and Brown, E.T., Rock mechanics for underground mining (Third Edition), Kluwer Academic Publishers, Dordrecht, 2006.

COURSE OUTCOMES

CO1	Have the knowledge in characterizing and rating the rock mass.
CO2	Arrive at the behaviour of rock for the given project.
CO3	Calculate the insitu stresses of rock.
CO4	Design underground excavation, open excavation and sub-structures.

CO5	Desigr	Design suitable support system under unstable condition.													
				Μ	APPI	NG O	F CO	s WI	TH PC)s ANI	D PSO	S			
COs				PRC	GRA	MOU	ITCO	MES	(POs)				PROGI OUTC	RAM SP OMES (ECIFIC PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3
CO2	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3
CO3	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3
CO4	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3
CO5	3	3	2	2	2	1	1	1	2	1	2	3	2	1	3

CE1030	COASTAL ENGINEERING	L	Т	Ρ	С						
		3	0	0	3						
OBJECTIVES											
 The ma 	ain purpose of coastal engineering is to protect harbors and improve navi	gatio	on.								
 The stu 	idents to the diverse topics as wave mechanics, wave climate, shoreline	prot	ectio	n							
method	Is and laboratory investigations using model studies.										
UNIT I	INTRODUCTION TO COASTAL ENGINEERING				9						
Indian Scenari	o - Classification of Harbours. Introduction - wind and waves - Sea and S	Swell	-								
Introduction to	small amplitude wave theory - use of wave tables- Mechanics of water w	vave	s -	С	01						
Linear (Airy) w	ave theory, Introduction to Tsunami										
UNIT II	WAVE PROPERTIES AND ANALYSIS				9						
Behaviour of w	vaves in shallow waters, Introduction to non-linear waves and their pro	pert	ies -								
Waves in shallow waters - Wave Refraction, Diffraction and Shoaling -Hindcast wave											
generation models, wave shoaling; wave refraction; wave breaking; wave diffraction random											
and 3D waves. Short term wave analysis - wave spectra and its utilities - Long term wave											
analysis- Statis	stics analysis of grouped wave data.										
UNIT III	TYPES AND WAVE TRANSFORMATION				9						
Tide analysis a	and prediction, storm surge, seiches and seasonal fluctuations - Long ter	m w	ater	С	:03						
level fluctuation	ns – Wave shoaling; wave refraction; wave breaking; wave diffraction				••						
UNIT IV	COASTAL DEFENSE				9						
Field measure	ment; models, groins, sea walls, offshore breakwaters, artificial nouris	shme	ent -	С	:04						
planning of coa	ast protection works - Design of shore defense structures -Case studies.				<u> </u>						
	MODELING IN COASTAL ENGINEERING				9						
Physical mode	eling in Coastal Engineering - Limitations and advantages - Role of	phy	sical								
modeling in coastal engineering - Numerical modeling - Modeling aspects - limitations - Case											
studies using	public domain models, Tsunami mitigation measures – Introduction to	D DF	PSIR								
Approach											
	TOTAL	.:4	5 PE	RIO	DS						
TEXT DOOKO											
TEXT BOOKS											
1. Mani	J.S., Coastal Hydrodynamics. PHI Pvt.Ltd. New Delhi - 2012.										
2. Dean	2. Dean, R.G. and Dalrymple, R.A., Water wave mechanics for Engineers and Scientists,										
Prentic	2. Dean, R.G. and Dairympie, R.A., water wave mechanics for Engineers and Scientists, Prentice-Hall. Inc., Englewood Cliffs, New Jersev, 1994										

- 1. Ippen, A.T., Estuary and Coastline Hydrodynamics, McGraw-Hill, Inc., New York, 1978.
- 2. Sorenson, R.M., Basic Coastal Engineering, A Wiley-Interscience Pub. New York, 1978.
- 3. Coastal Engineering Manual, Vol. I-VI, Coastal Engineering Research Centre, Dept. of the Army, US Army Corps of Engineers, Washington DC, 2006

COURSE OUTCOMES

CO1	Describe the problems associated with Indian coast. Apply Linear wave theory
001	and use wave tables for solving the dispersion equation.
CO2	Distinguish between linear and non-linear wave theories. Solve problems on wave
002	transformations. Apply probability theory for wave analysis.
CO3	Types of waves, wave shoaling, diffraction, refraction

CO4	Model perspe	and de	esign	shore	defe	nse st	tructu	res ar	nd des	scribe t	he pro	blems	from reli	ability ar	nd risk
CO5	Compa and dis	are and sadvar	d cont ntages	rast p s betw	hysic /een t	al anc hem.	d math	nemat	ical c	oastal	model	s and o	critique th	ne advar	ntages
MAPPING OF COs WITH POS AND PSOS															
					PROGRAM SPECIFIC										
COs					OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	-	2	-	-	-	-	3	3	1	1
CO2	3	2	-	-	-	3	-	3	-	-	-	2	3	3	1
CO3	3	3	2	-	2	2	2	2	2	2	2	2	2	3	3
CO4	3	3	3	-	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3	2	2	3

CE1031	COASTAL ZONE MANAGEMENT	L	Τ	Ρ	С						
		3	0	0	3						
OBJECTIVES											
 To be a 	ble to "see" the features and components of the natural, engineering and	d hu	man								
aspects	of the coast, the function of component and relationship between them.										
🛠 To be a	ble to interpretation and analysis of coastal issues to determine appropri	iate									
approad	ches in coastal management.										
🔹 To be a	ble to understand the need for coastal zone management and to develop	p an	ICM								
plan.											
UNIT I COASTAL ZONE											
Coastal Zone -	- Beach Profile – Surf Zone – Off Shore – Coastal Waters – Coastal sedi	imer	nts-	C	01						
Estuaries – We	Estuaries – Wet Lands And Lagoons – Coastal dunes-Coastal Geomorphology.										
UNIT II	COASTAL RESOURCES				9						
Types and fur	nctions of coastal and marine resources- Renewable and Non- Re	new	able								
resources - liv	ring marine resources and Nonliving marine resources-Marine mineral	ls-pl	acer	С	02						
deposits-hydro	carbon deposits-polymetallic nodules.										
UNIT III	COASTAL ECOSYSTEM				9						
Marine ecosyst	tem: Mangroves- Sea grass -seaweeds - coral reef- Large marine ecosys	sten	ז-								
Climate effects	on living marine resources- Biological monitoring of marine ecosystem-	Hur	nan	С	03						
impacts on ma	rine ecosystem.										
UNIT IV	COASTAL PROCESSES				9						
Erosion And De	epositional Shore Features – Methods Of Protection – Littoral Currents –	-		C	~						
Coastal Aquife	rs – Sea Water Intrusion – Impact Of Sewage Disposal In Seas.				04						
UNIT V	COASTAL REGULATIONS				9						
Introduction-	What is ICM- Developing an ICM framework- Principles-Goals-	-defi	ining								
boundaries- C	coastal regulations for main land India – coastal regulations for	Isla	nds-	С	05						
introduction to Environmental Law and policy.											
TOTAL : 45 PERIOD											
TEXT BOOKS											
1. NCSCM straigies and guideline for National implementation of Integrated Coastal zone											

- management, 2013
- 2. Ramesh R and Purvaja R , E- learning moduleon ICZM for UNESCO-IHE, The Netherlands, 2006

- 1. Richard Sylvester, "Coastal Engineering, Volume I And II", Elseiner Scientific Publishing Co., 1999
- 2. Dwivedi, S.N., Natarajan, R And Ramachandran, S., "Coastal Zone Management In Tamilnadu", Madras, 1991

COURSE OUTCOMES

CO1	Describe The Coastal Zone Regulations, Coastal Processes And to identify natural,
	engineering and human components on the coast
CO2	Able to interpretation and analysis of coastal issues to determine appropriate

	approa and wi	approaches in coastal management and able to communicate effectively in speech and writings																
CO3	Able to import	Able to learn about different ecosystem available in coastal zones and their importance																
CO4	Able to	Able to learn about coastal erosion and accretions, impacts of sewage disposal																
CO5	Able to understand about coastal regulations, its laws and policies																	
MAPPING OF COs WITH POs AND PSOs																		
Cos		PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3			
CO1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
CO2	2	2	2	2	-	3	-	2	-	3	2	-	3	3	3			
CO3	2	3	3	2	3	3	3	2	-	3	-	2	3	-	3			
CO4	-	3	-	2	3	3	2	2	-	3	1	3	3	3	3			
CO5	1	-	-	2	-	-	-	-	-	-	-	-	-	-	-			

CE1032	GLOBAL CLIMATE CHANGE	L	Т	Ρ	С						
		3	0	0	3						
OBJECTIVI	S	1									
🛠 To g	ive students the various perspectives on climatic change and the actions	SOC	cietie	s ha	ave						
take	n to address its potential and actual impacts										
🛠 To	nighlight that natural processes and human activities alter the compositio	n of	the	oce	ean						
and	atmosphere, both globally and regionally, that trigger climate change at dif	fere	nt te	mpc	oral						
and	spatial scales										
🛠 Top	rovide a basic conceptual understanding of the complexity of the climate s	syste	em; a	ind ⁻	the						
observed and potential effects of anthropogenic-induced climate change on human and natur											
systems based on IPCC recommendations											
🛠 To e	nable understanding of the international and national responses to clima	ate c	hanç	je a	and						
cons	ider individual responsibility and future challenges										
UNIT I	INTRODUCTION				9						
Historical O	verview of Climate Change Science- Changes in Atmospheric Constitue	ents	and								
Radiative Fo	rcing - The Ice Ages: An Introduction - Determining Past Climates - Recons	struc	ting								
Past Climat	e Change Interannual to decadal variability- Observations: Atmospheric	Sur	face	C	01						
and Climate	Change										
UNIT II	OCEAN-ATMOSPHERE INTERACTIONS			-	9						
Role of the	oceans in climate -Introduction to ocean-atmosphere interactions - Global I	radia	ation								
balance -O	ean currents - Thermohaline circulation and deep water masses - Oce	an I	heat	С	02						
budgets a n	d water mass mixing - the cryosphere										
UNIT III	IMPACTS OF CLIMATE CHANGE				9						
Global warr	ning - greenhouse effect - green house gases - impacts on physical sy	/ster	ns -								
impacts on	ecological systems - vulnerability of coast - climate change and biodiv	vers	ity -	С	03						
sectoral imp	acts - ocean acidification - carbon sequestration by ecological systems										
UNIT IV	ASSESSMENT OF CLIMATE CHANGE			-	9						
The IPCC	Assessments -UNFCCC - global convention on climate change - pro	toco	ols -								
internationa	negotiations - Indian assessments - India's plan of action for climate change	je		C	04						
UNIT V	ADAPTATION AND MITIGATION			-	9						
Mitigating of	limate change - blue carbon- geoengineering - renewable energy ar	id o	ther								
alternate s	stems - adaptation indigenous knowledge - sectoral adaptations -	coa	astal	С	05						
ecosystems - coastal communities - mainstreaming climate change into development practices											
	TOTAL	.:45	5 PEI	RIO	DS						
L											
TEXT BOO	(\$										

- 1. Climate Change The Science, Impacts and Solutions (2nd Edition) A. Barrie Pittock, CSIRO Publishing, 2009.
- Fundamentals of weather and climate (2nd Edition) Robin McIlveen, Oxford University Press, 2009

1. Climate change – Mitigation of Climate, IPCC, 2013.

2. Atmosphere Weather and Climate – K Siddartha, Kisalaya Publications Pvt. Ltd, 2013

3. W. Neil Adger, Irene Lorenzoni and Karen L. O, Adapting to Climate Change: Thresholds,

Values, Governance, Cambridge, 2009.

4.	Vineet Kumar, Arjuna Srinidhi, Chandra Bhushan, Geetika Singh, Rising to the Call: Good
	Practices of Climate Change Adaptation in India, Centre For Science And Environment
	publisher, 2014.

5. Dan Gafta and John Akeroyd, Nature Conservation Concepts and Practice, Springer, 2006.

COUR	COURSE OUTCOMES														
Upon	Upon completion of the course, students will be able to														
CO1	Under	stand t	he sc	ience	and b	oasic (of wea	ather	and c	limate					
CO2	Student will attain the knowledge on natural and anthropogenic activities, which accelerate the climate change														
CO3	Acquire knowledge on various protocols and agreement that help to control and reduce climate change impacts														
CO4	Know the adaptive techniques to build the climate resilience society.														
CO5	Gain awareness about the stress on natural based resources and to conserve it from natural calamities														
	MAPPING OF COs WITH POS AND PSOS														
								MES					PROG	RAM SP	ECIFIC
COs		OUTCOMES (POS)													
	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO3	-	3	-	-	2	-	-	-	-	-	2	2	2	-	-
CO4	-	-	3	2	2	3	3	-	-	-	2	-	2	2	3
CO5	-	-	-	-	-	-	-	2	3	3	-	3	-	3	3

CE1033	CLIMATE CHANGE AND VULNERABILITY ASSESSMENT	L	Т	Ρ	С						
		3	0	0	3						
OBJECTIVES											
🛠 To fami	liarize the methodologies of climate impacts and vulnerability assessme	nt or	ו								
Natural	resources										
UNIT I	INTRODUCTION				9						
Global, Region	al and Local climates, Ocean Circulation, weather parameters. Tropical	clim	ate,	C	01						
Monsoons and their role in global climate change.											
UNIT II	NATIONAL ACTION PLAN ON CLIMATE CHANGE				9						
National and S	tate Action Plan on Climate Change, Significance on Sustainable deve	elopr	nent								
of Natural reso	ources – National Water Mission, Sustainable Agriculture Mission, Gre	en l	India	С	02						
Mission, Coastal Conservation.											
UNIT III	CLIMATE SCENARIOS				9						
Global and Re	gional Climate Scenarios – Representative Concentration Pathways (F	RCP	2.6,								
4.5,6.0 and 8.	5), Global Circulation Model (GCM) - Statistical and Dynamical Downs	calir	ng of	С	03						
GCM – Region	al Climate Model (RCM).										
UNIT IV	IMPACTS AND VULNERABILITY ASSESSMENT – METHODOGLOG	θY			9						
Definitions of F	Risk, Hazards, Exposure, Sensitivity and Vulnerability. Climate Risk Asse	ssm	ient,	C	01						
IPCC Methodo	logy – Vulnerability indices.				04						
UNIT V	VALIDATION AND APPLICATION OF MODELS				9						
Climate Project	tions and Validation- Uncertainty analysis - Bias Correction - Sector	oral	wise	6	05						
Case Studies in India.											
TOTAL : 45 PERIO											
TEXT BOOKS											

1.IPCC Fifth Assessment Report - Impacts, Adaptation and Vulnerability, Cambridge

University Press, 2014.

2.Neelin David J, "Climate Change and Climate Modelling", Cambridge University Press, 2011.

REFERENCE BOOKS

1. Thomas Stocker, "Introduction to Climate Modelling", Advances in Geophysical and

Environmental Mechanics and Mathematics. Springer Publication, 2011.

2. India's National Action Plan on Climate Change (NAPCC), Government of India, 2018

3. Michele Companion and Miriam S. Chaiken, Responses to Disasters and Climate Change:

Understanding Vulnerability and Fostering Resilience, CRC Press, 2017.

4. Climate Change – The Science, Impacts and Solutions (2nd Edition) – A. Barrie Pittock,

CSIRO Publishing, 2009.

COURSE OUTCOMES

CO1	Understand the basic and concept behind the climate change
CO2	Know the global and national policies to combat the climate change impacts
CO3	Understand the basics of climate modelling and envisage the climate change impact based on different emission scenario

CO4 Able to assess the risk and vulnerability on different sectors due to climate change

CO5 Know the validation of climate models and correlate the climate related case studies

MAPPING OF COs WITH POS AND PSOs

Cos				PRC	GRA	MOU	ITCO	MES	(POs)	1			PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3	
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO2	-	3	-	2	-	-	-	-	-	2	3	-	2	2	3	
CO3	2	-	-	2	3	-	-	-	-	-	-	3	-	-	-	
CO4	2	3	3	3	3	3	3	3	2	3	-	2	-	-	2	
CO5	2	2	2	-	3	-	2	2	-	2	2	-	-	2	-	

3 0 0	3										
OBJECTIVES											
 Understand and analyse the energy data of industries 											
 Carryout energy accounting and balancing 											
 Conduct energy audit and suggest methodologies for energy savings and 											
 Utilize the available resources in optimal ways 											
UNIT I INTRODUCTION	9										
Energy & Power scenario of the World; Present National Energy consumption Data -											
Environmental aspects associated with energy utilization - Energy Auditing: Need, Types, CO	01										
Methodology and Barriers. Role of Energy Managers. Instruments for energy auditing.											
UNIT II THERMAL SYSTEMS	9										
Stoichiometry, Boilers, Furnaces and Thermic Fluid Heaters – Efficiency computation and											
encon measures. Steam: Distribution & Usage: Steam Traps, Condensate Recovery, Flash	02										
Steam Utilization, Insulators & Refractories											
UNIT III ELECTRICAL SYSTEMS	9										
Components of EB billing – HT and LT supply, Transformers, Cable Sizing, Concept of											
Capacitors, Power Factor Improvement, Harmonics, Electric Motors - Motor Efficiency	~ ^										
Computation, Energy Efficient Motors, Illumination – Lux, Lumens, Types of lighting, Efficacy,	03										
LED Lighting and scope of Encon in Illumination.											
UNIT IV ENERGY CONSERVATION IN MAJOR UTILITIES	9										
Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems	~										
– Cooling Towers – D.G. sets	04										
Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present											
Value, Life Cycle Costing –ESCO concept											
TOTAL : 45 PERIOI	DS										

1. Energy Manager Training Manual (4 Volumes) available at www.energymanager training.com,a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India, 2004.

REFERENCE BOOKS

1. Witte. L.C., P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation" Hemisphere Publ, Washington, 1988.

2. Callaghn, P.W. "Design and Management for Energy Conservation", Pergamon Press, Oxford, 1981.

3. Dryden. I.G.C., "The Efficient Use of Energy" Butterworths, London, 1982

- 4. Turner. W.C., "Energy Management Hand book", Wiley, New York, 1982.
- 5. Murphy. W.R. and G. Mc KAY, "Energy Management", Butterworths, London 1987.

COUR	COURSE OUTCOMES															
Upon ●	 Upon completion of this course, the students can able to analyse the energy data of industries. Can carryout energy accounting and balancing 															
•	Can s	uggest	meth	odolo	gies f	or ene	ergy s	aving	S							
	Ability to learn the concept of energy scenario, energy consumption and instruments for energy															
CO1	auditing.															
CO2	Ability to carry out energy accounting and balancing in electrical system															
CO3	Ability to carry out energy accounting and balancing in thermal system system															
CO4	Ability to suggest methodologies for energy savings in major utilities															
CO5 To understand the economics in energy saving																
MAPPING OF COs WITH POs AND PSOs																
				DRC		моі	ΙΤΟΟ	MES	(POe	`			PROG	RAM SP	ECIFIC	
COs		OUTCOMES (POS) OUTCOMES (PSOs)														
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	2	3	3	1	1	1	2	2	3	1	3	
CO2	3	3	3	3	2	3	3	1	1	1	3	2	3	1	3	
CO3	3	3	3	3	3	2	3	1	1	1	3	2	3	1	3	
CO4	3	3	3	3	3	2	3	1	1	1	2	2	3	1	3	
CO5	3	3	3	3	2	3	3	1	1	1	3	2	3	1	3	

OCH 103	ENVIRONMENT AND AGRICULTURE	Ρ	С												
	3 0	0	3												
OBJECTIVES															
 To emphasize on the importance of environment and agriculture on changing global scenario 															
and the emerging issues connected to it															
			9												
Environmen	al basis for agriculture and food – Land use and landscape changes – Water														
– Agro ecosystems.			:01												
UNIT II	ENVIRONMENTAL IMPACTS		9												
Irrigation de	velopment and watersheds - mechanized agriculture and soil cover impacts -														
Erosion and problems of deposition in irrigation systems – Agricultural drainage and C			02												
downstream	impacts – Agriculture versus urban impacts														
UNIT III	CLIMATE CHANGE		9												
Global warm	ing and changing environment – Ecosystem changes – Changing blue-green-grey	C	.03												
water cycles	 Water scarcity and water shortages – Desertification. 		.05												
UNIT IV	ECOLOGICAL DIVERSITY AND AGRICULTURE		9												
Ecological d	iversity, wild life and agriculture – GM crops and their impacts on the environment														
– Insects and agriculture – Pollination crisis – Ecological farming principles – Forest CO4			04												
fragmentatio	n and agriculture – Agricultural biotechnology concerns.														
UNIT V	EMERGING ISSUES		9												
Global environmental governance – alternate culture systems – Mega farms and vertical farms															
- Virtual water trade and its impacts on local environment – Agricultural environment policies CO5															
and its impa	and its impacts – Sustainable agriculture.														
TOTAL : 45 PERIO			DS												
TEXT BOOKS															
1. M.Lakshmi Narasaiah, Environment and Agriculture, Discovery Pub. House, 2006.															
2. Arvind Kumar, Environment and Agriculture, ABH Publications, New Delhi, 2005															
REFERENC	E BOOKS														
1. T.C. Byerly, Environment and Agriculture, United States. Dept. of Agriculture. Economic Research			h												
Service, 2006.															
2. Robert D.	2. Robert D. Havener, Steven A. Breth, Environment and agriculture: rethinking development issues														
for the 21st century: proceedings of a symposium, Winrock International Institute for Agricultural															
Developmer	t, 1994														
3. Environment and agriculture: environmental problems affecting agriculture in the Asia and Pacific															
region; World Food Day Symposium, Bangkok, Thailand. 1989															
COURSE OUTCOMES															
Upon completion of the course, students will be able to															
CO1 To ga	CO1 To gain knowledge on the issues of environmental concerns														
CO2 To u	nderstand the environmental impacts on agriculture and watershed.														
	knowle	edge													
-----	--------	---------	--------	-------	--------	---------	-------	--------	--------	--------	---------	--------	----------	--------	--------
CO4	To und	derstar	nd the	ecos	ystem	i, ecol	ogica	l dive	rsity						
CO5	To und	derstar	nd the	globa	al and	local	emer	ging i	ssues	on ag	ricultu	re and	biotechn	ology	
				Ν	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	S			
				PRC	GRA	моц	псо	MES	(POs)				PROG	RAM SP	ECIFIC
Cos									(1 00)				OUTC	OMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	1	-	2	2	1	-	-	1	2	2	2	2
CO2	2	1	2	1	2	2	2	1	-	-	1	2	2	2	2
CO3	3	3	3	1	-	3	3	1	-	-	1	3	3	3	3
CO4	2	1	2	1	-	2	2	1	-	-	1	2	2	2	2
CO5	3	1	2	1	-	2	2	1	-	-	1	2	2	2	3

OEE102	RENEWABLE ENERGY SOURCES	L	Т	Ρ	С
	(Common to MECH, ECE &CIVIL)	3	0	0	3
OBJECTIVES					
 To get e 	exposure on solar radiation and its environmental impact to power.				
To know	v about the various collectors used for storing solar energy.				
 To know To know 	v about the various applications in solar energy.				
 Io learr To know 	about the wind energy and biomass and its economic aspects.				
					0
Environmental	aspects of energy utilization- importance of renewable energy sources.	- nhv	veice		9
of the sun-the	solar constant, extra-terrestrial and terrestrial solar radiation, solar radi	iatio		6	01
titled surface. I	solar constant, extra terrestilar and terrestilar solar radiation, solar radiation	data			UI
					9
Non-Concentra	ting and concentrating collectors-classification of concentrating a	ndı	non-		5
concentrating c	collectors- orientation and thermal analysis- advanced collectors.			С	02
UNIT III	SOLAR ENERGY STORAGE AND APPLICATIONS				9
Storage metho solar heating/co	ds- Sensible, latent heat and stratified storage, solar ponds. Solar Appl poling technique, solar distillation and drying. photovoltaic energy conve	ication rsion	ons- 1.	С	03
UNIT IV	WIND ENERGY AND BIOMASS				9
Sources and p Types of wind Anaerobic/aero of bio-gas- utiliz	potentials- horizontal and vertical axis windmills- performance charac Turbine generators- Betz criteria. BIO-MASS: Principles of Bio-Cor bic digestion- types of Bio-gas digesters- gas yield- combustion charac zation for cooking.	teris vers cteri:	tics- sion- stics	с	04
UNIT V	GEOTHERMAL AND OCEAN ENERGY				9
Geothermal Re OCEAN ENER cycles. Tidal and their econd	esources- types of wells- methods of harnessing the energy- potential RGY: OTEC- Principles utilization- setting of OTEC plants- thermond wave energy: Potential and conversion techniques- mini-hydel power pomics.	in Ir dyna er pl	ndia. amic ants	с	05
	ΤΟΤΑΙ	_ : 45	5 PE	rio	DS
TEXT DOOKS					
1. Rai G	.D, Non-Conventional Energy Sources, Knanna Publishers, 2011.				
	Mawier, Renewable Energy Resources, CRC Press (Taylor & Francis)	, 20'	11		
		0.01	07		
1. IIWai	and Gnosal, "Renewable energy resources", Narosa Publishing House	9, 200 	07. 		
2. Ramo 2004	esh R & Kumar K.U , "Renewable Energy Technologies",Narosa Pu	blish	ing I	Hou	se,
3. Mitta 2003	I K M, "Non-Conventional Energy Systems", Wheeler Publishing Co.	Ltd,	New	De	lhi,
4. Kotha New	ari D.P, Singhal ., K.C., "Renewable energy sources and emerging tech Delhi, 2010.	nolog	gies"	, P.I	⊣ .I,

		TCOM	EQ												
Upon	comple	etion o	of the	cours	se, st	udent	ts will	l be a	ble to)					
CO1	Ability	to unc	lersta	nd the	e phys	sics of	f solar	radia	ation a	ind pos	ssible (energy	convers	ion.	
CO2	Ability	to unc	lersta	nd the	e oper	ation	of vai	rious	solar	energy	collec	tors.			
CO3	Ability	to lea	rn the	meth	odolo	gies c	of stor	ing so	olar er	nergy.					
CO4	Acquir	e Kno	wledg	e in w	/ind a	nd bio	omass	s ener	gy co	nversio	on tech	niques	6.		
CO5	Acquir	e Kno	wledg	e in g	eothe	rmal	and o	cean	energ	y conv	rersion	techni	ques.		
				Μ	APPI	NG O	F CO	s WI	TH PC)s ANI	D PSO	s			
													PROG	RAM SP	ECIFIC
COs				PRC	GRA	MOU	тсоі	MES ((POs)				PROGI OUTC	RAM SP OMES (I	ECIFIC PSOs)
COs	P01	PO2	PO3	PRC	OGRA	M OU P06	PO7	MES ((POs) P09	PO10	P011	PO12	PROGI OUTC PSO1	RAM SP OMES (I PSO2	ECIFIC PSOs) PSO3
COs CO1	PO1	PO2	PO3	PRC PO4	GRA P05	M OU PO6 3	P07 3	MES PO8	(POs) PO9	PO10	PO11	PO12	PROGI OUTC PSO1	RAM SP OMES (I PSO2	ECIFIC PSOs) PSO3 1
COs	PO1 3 3	PO2 1 3	PO3 1 3	PRC PO4 1 3	PO5 1 3	M OU PO6 3 3	PO7 3 3	PO8 3 3	(POs) PO9 1 3	PO10 1	PO11 1 3	PO12 3 3	PROGI OUTC PSO1 1 3	RAM SP OMES (I PSO2 1 3	ECIFIC PSOs) PSO3 1 3
COs C01 C02 C03	P01 3 3 3 3	P02 1 3 3	PO3 1 3 3	PRC PO4 1 3 3	PO5 1 3 3	M OU PO6 3 3 3	PO7 3 3 3 3	PO8 3 3 3 3	(POs) PO9 1 3 3	PO10 1 1 1	PO11 1 3 3	P012 3 3 3	PROGI OUTC PSO1 1 3 3	RAM SP OMES (I PSO2 1 3 3	ECIFIC PSOs) PSO3 1 3 3
COs C01 C02 C03 C04	P01 3 3 3 3 3 3	PO2 1 3 3 3	PO3 1 3 3 3	PRC PO4 1 3 3 3	PO5 1 3 3 3	M OU PO6 3 3 3 3 3	PO7 3 3 3 2	PO8 3 3 3 3 3	(POs) PO9 1 3 3 3	PO10 1 1 1 1 1	P011 1 3 3 2	P012 3 3 3 3 3	PROGI OUTC PS01 1 3 3 3	RAM SP OMES (I PSO2 1 3 3 3	ECIFIC PSOs) PSO3 1 3 3 3

OEI101	SENSORS AND TRANSDUCERS	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
To under	erstand the concepts of measurement technology.				
 To lear 	n the various sensors used to measure various physical parameters.				
 To lear 	n the fundamentals of signal conditioning, data acquisition and commun	icati	on sy	/ste	ms
used in	mechatronics system development				
UNIT I	INTRODUCTION TO SENSOR-BASED MEASUREMENT SYSTEMS				9
Basics of Mea	asurement – Classification of errors – Error analysis – Static and	dyna	amic		
characteristics	of transducers – Performance measures of sensors – Classification of se	enso	ors –	С	01
Sensor calibrat	ion techniques – Sensor Output Signal Types				
UNIT II	MOTION, PROXIMITY AND RANGING SENSORS				9
Motion Senso	rs – Potentiometers, Resolver, Encoders – Optical, Magnetic, Ir	nduc	tive,		
Capacitive, LV	DT - RVDT - Synchro - Microsyn, Accelerometer.,- GPS, Bluetooth	, Ra	ange	С	02
Sensors – RF I	peacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LID	AR).		
UNIT III	FORCE, MAGNETIC AND HEADING SENSORS				9
Strain Gage,	oad Cell, Magnetic Sensors -types, principle, requirement and adva	anta	ges:		
Magneto resist	tive – Hall Effect – Current sensor Heading Sensors – Compass, Gyr	rosc	ope,	С	03
Inclinometers.					
UNIT IV	OPTICAL, PRESSURE AND TEMPERATURE SENSORS				9
Photo conduct	ive cell, photo voltaic, Photo resistive, LDR - Fiber optic sensors - Pre	essu	ire –		
Diaphragm, Be	ellows, Piezoelectric - Tactile sensors, Temperature - IC Sensor, The	ərmi	stor,		
RTD, Thermoo	couple. Acoustic Sensors – flow and level measurement, Radiation Se	enso	ors –	С	04
Introduction to	Smart Sensors - Film (Thin and thick film) sensor, MEMS & Nano me	cha	nical		
Sensors, LASE	R sensors, Environmental (Air and water quality) monitoring sensors				
UNIT V	SIGNAL CONDITIONING and DAQ SYSTEMS				9
Amplification -	Filtering - Sample and Hold circuits - Data Acquisition: Single char	nnel	and		
multi channel	data acquisition – Data logging - applications - Automobile, Aerospace	э, Н	ome	С	05
appliances ,Ma	nufacturing , Structural health monitoring				
	TOTAL	. : 4	5 PE	RIO	DS
TEXT BOOKS					
1. Ernest O Do	ebelin, "Measurement Systems – Applications and Design", Tata McGra	w-H	ill, 20	09.	

2. Sawhney A K and Puneet Sawhney, "A Course in Mechanical Measurements and Instrumentation and Control", 12th edition, Dhanpat Rai & Co, New Delhi, 2013.

REFERENCE BOOKS

1. Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010.

2. John Turner and Martyn Hill, "Instrumentation for Engineers and Scientists", Oxford Science Publications, 1999.

3. Richard Zurawski, "Industrial Communication Technology Handbook" 2nd edition, CRC Press, 2015.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Expert	ise in v	variou	s cali	bratio	n tecł	nnique	es and	d sign	al type	s for s	ensors	•		
CO2	Apply the proximity and ranging sensors in the automotive and mechatronics applications.														
CO3	Under	stand t	he pri	nciple	es of v	/ariou	s mag	gnetic	and h	neading	g sens	ors.			
CO4	Unders	stand t	he fui	nction	ing of	optic	al, pre	essure	e, tem	peratu	re and	smart	sensors	•	
CO5	Implen	nent th	e DA	Q sys	tems	with d	liffere	nt ser	sors	for rea	l time a	applica	tions.		
				Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	s			
				PRO	GRA		тсо	MES	$(\mathbf{P} \cap \mathbf{c})$				PROG	RAM SP	ECIFIC
Cos				T NO					(1 0 3)				OUTC	OMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1
CO2	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1
CO3	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1
CO4	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1
CO5	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1

OME107	VIBRATION AND NOISE CONTROL	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES		I			
♣ To study th	e basics, sources and its control techniques of vibration				
To study th	e basics, sources and its control techniques of noise				
✤ To study th	e sources of vibration and noise in automobiles				
	vibration and noise in automotive components				0
	BASICS OF VIBRATION				9
Introduction, c	lassification of vibration: free and forced vibration, undamped and	dam	iped		
vibration, linea	r and non-linear vibration, response of damped and undamped system	ns ur	nder	С	01
vibration deter	minipation of natural frequencies	lorsi	onai		
	BASICS OF NOISE				9
	photos of tropic wavelength and sound pressure level, addition, su	htro	otion	Т	
and averaging	decibel levels, noise dose level, legislation, measurement and analysis	of no	bise.		<u></u>
measurement	environment, equipment, frequency analysis, tracking analysis, sound	d qu	ality		02
analysis.					
	AUTOMOTIVE NOISE SOURCES				9
Noise Characte	eristics of engines, engine overall noise levels, assessment of combustic	on no	oise,		
assessment of	mechanical noise, engine radiated noise, intake and exhaust noise	, en	gine	С	03
necessary con	tributed noise, transmission noise, aerodynamic noise, tire noise, brake i	loise	Э.		•
	CONTROL TECHNIQUES				9
Vibration isola	ation, tuned absorbers, un-tuned viscous dampers, damping tre	atme	ents,		~ 4
application dyr	namic forces generated by IC engines, engine isolation, crank shaft c	lamp	bing,	C	04
					0
					3
Methods for co	ontrol of engine noise, combustion noise, mechanical noise, predictive a	analy	ysis,		05
sound energy a	absorption, sound transmission through barriers	1020	ires,	Ŭ	05
	TOTAL	.:4	5 PE	RIO	DS
TEXT BOOKS					
1.Singiresu S.F	Rao, "Mechanical Vibrations", 5th Edition, Pearson Education, 2010				
2. David Bies a	and Colin Hansen, "Engineering Noise Control – Theory and Practice",4th	ו Edi	ition,	Ea	ind
FN Spon, Tayle	pre & Francise e-Library,2009				
REFERENCE	BOOKS				
1. Benson	H. Tongue, "Principles of Vibrations", 2nd Edition, Oxford University,200)7	_f \/;	heat	lian
2. with Application	n. Thomson, Mane Dillon Danien, Chandramouli Padmanabhan, The	ory		brat	.1011
3. Grover.	G.T., "Mechanical Vibrations", Nem Chand and Bros., 1996				
4. Bernard	d Challen and Rodica Baranescu - "Diesel Engine Reference Book",	Secc	ond I	Editi	on,
SAE Internation	nal,1999.				
5. Julian H	Happian-Smith - "An Introduction to Modern Vehicle Design"- Butterwo	rth-F	Heine	ema	nn,
6. Rao, J.	S and Gupta, K., "Introductory course on Theory and Practice of Mecha	nica	l Vib	ratic	on".
2nd Edition, Ne	ew Age International Publications,2010				,
7. Shabar	a. A.A., "Theory of vibrations – An introduction", 2nd Edition, Springer,20	010			
8. Balakur	mar Balachandran and Edward B. Magrab, "Fundamentals of Vibratio	ns",	1st	Edit	on,
Cenyaye Lean	111y, 2009				

9. Engine	9. John Fenton, "Handbook of Automotive body Construction and Design Analysis – Professional Engineering Publishing,1998														
COUR	COURSE OUTCOMES														
Upon	comple	etion o	of the	cours	se, st	udent	ts wil	l be a	ble to)					
CO1	To und	derstar	nd the	basic	s, diff	erent	types	and	sourc	e of vit	oration				
CO2	To und	lerstar	nd the	basic	s, diff	erent	types	and	sourc	e of no	oise				
CO3	To und	derstar	nd and	anal	yze th	e var	ious s	source	es of a	utomo	tive no	oise			
CO4	To und	derstar	nd the	vario	us co	ntrol t	echni	ques	of vibi	ration					
CO5	To und	derstar	nd the	sourc	ces ar	nd cor	ntrol te	echnic	ques c	of auto	motive	noise			
				Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	s			
									(5.0.)				PROG	RAM SP	ECIFIC
COs				PRC	JGRA		JICO	MES	(POs)			OUTC	OMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	3	3	2	3	1	1	3	3	1	3	2	2
CO2	3	3	3	3	3	2	3	1	1	3	3	1	3	3	3
CO3	2	3	3	3	3	2	3	1	1	3	3	1	3	2	2
CO4	2	3	3	3	3	2	3	1	1	3	3	1	3	3	3
CO5	2	3	3	3	3	2	3	1	1	3	3	1	3	3	3

OCH104	TEXTILE EFFLUENT TREATMENTS	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
To unde	erstand the functions of the basic components of a Robot.				
To stud	y the use of various types of End of Effectors and Sensors				
 To impa 	art knowledge in Robot Kinematics and Programming				
 To learn 	n Robot safety issues and economics.				
UNIT I	CHARACTERISTICS OF EFFLUENTS				9
Constituents of	f water and their effect on textile wet processing, Effluent discharge st	and	ards		
for inland surfa	ce water public sewers, on land for irrigation, marine coastal areas and	drin	king	C	;01
water paramete	ers, Quality requirements of water for cotton and synthetic Textile proces	sing	-		
UNIT II	PRIMARY TREATMENT				9
Characteristics	and treatment of cotton, synthetics and wool processing effluents, Red	uctic	on of		
pollution load,	Primary treatment methods - screening, sedimentatation, equa	alisa	tion,	С	:02
neutralisation,	coagulation and flocculation				
UNIT III	SECONDARY TREATMENT				9
Secondary trea	atment methods – Trickling filtration, Activated sludge process, aerated	lago	ons,	6	·
secondary sed	mentation, oxidation ponds, Anaerobic Digestion, sludge disposal.				03
UNIT IV	TERTIARY TREATMENT				9
Tertiary treatm	ent – Evaporation (solar and steam), Advanced oxidation system, Me	embr	rane		
technologies (MF, UF, NF & RO) ,Reverse osmosis, ion exchange and activated	ca	rbon	С	;04
treatment. Qua	lity parameters at entry and exit of RO.				
UNIT V	AIR QUALITY MANAGEMENT				9
Air Pollution -	· Properties of air pollutants, control of air pollutants - Air pollution	CO	ntrol		
equipment, Ar	nbient air quality standards. Noise pollution – Types of noise -	– N	oise	С	;05
measurement a	and – Control of noise pollution.				
<u> </u>	TOTAL	.:4!	5 PE	RIO	DS
L					

1. Rao,C.S., "Environment Pollution control Engineering", New age International Ltd. and Publishers, N.Delhi, 2004.

2. Reife, A., and Freeman, H.S., (Ed)., "Environmental chemistry of dyes and pigment", Wiley., London, 2000, ISBN: 047158276.

REFERENCE BOOKS

1. Horrockks, A.R (Ed)., "Ecotextiles'98: Sustainable development", The Text.Inst., Manchester 1999, ISBN: 1855732426.

2. Modak.P., "The textile industry and the environment", UNEP:HMSO, Blackwells, Leeds, 2003, ISBN: 9280713671

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Understand the characteristics of water and effluent discharge standards

CO2 Understand the primary treatment process involved in textile industry

CO3	Under	stand t	he dif	ferent	treat	ment	proce	esses	involv	ved in	waste	water	reatmen	t	
CO4	Perfor	m the I	resea	rch ar	nd dev	velopr	nent t	o proc	duce z	zero di	scharg	je efflu	ents		
CO5	Under	stand t	he tex	ktile p	roces	sing r	elated	d caus	ses fo	r pollut	ion				
				Μ	APPI	NG O	F CO	s WI1	rh PC)s ANI	D PSO	S			
				DDC				MEG					PROG	RAM SP	ECIFIC
COs				FNC	GNA				(FUS)				OUTC	OMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	PO1	PO2	PO3	PO4 3	PO5	PO6	PO7	PO8	PO9 3	PO10 2	PO11	PO12	PSO1	PSO2	PSO3
CO1 CO2	PO1 3 3	PO2 1 1	PO3 0 0	PO4 3 3	PO5 3 3	PO6 0 0	PO7 2 2	PO8 0 0	PO9 3 3	PO10 2 2	PO11 1 1	PO12 2 2	PSO1 2 2	PSO2 2 2	PSO3 2 2
CO1 CO2 CO3	PO1 3 3 3	PO2 1 1 1 1	PO3 0 0 0	PO4 3 3 3	PO5 3 3 3	PO6 0 0 0	P07 2 2 2	PO8 0 0 0	PO9 3 3 3	PO10 2 2 2 2	PO11 1 1 1	P012 2 2 2 2	PSO1 2 2 3	PSO2 2 2 3	PSO3 2 2 3
CO1 CO2 CO3 CO4	PO1 3 3 3 3 3 3	PO2 1 1 1 1 1 1	PO3 0 0 0 0 0	PO4 3 3 3 3	PO5 3 3 3 3 3	PO6 0 0 0 0	P07 2 2 2 2 2	PO8 0 0 0 0 0	PO9 3 3 3 3	PO10 2 2 2 2 2 2	PO11 1 1 1 1 1 1 1 1	PO12 2 2 2 2 2 2	PSO1 2 2 3 2	PSO2 2 2 3 2	PSO3 2 2 3 2 3

OEI102	ROBOTICS	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
🛠 To impa	art awareness about the pollution created by different stages of wet proce	essir	ng		
🛠 To fami	liarize the students about the importance of water and its analysis				
 To ena 	ble the students to understand about the waste water treatment plar	nts a	and v	vari	ous
treatme	nts carried out				
UNIT I	FUNDAMENTALS OF ROBOT				9
Robot - Defin	ition - Robot Anatomy - Co ordinate Systems, Work Envelope Ty	oes	and		
Classification-	Specifications-Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pa	iy Lo	oad-	С	;01
Robot Parts an	d their Functions-Need for Robots-Different Applications.				
UNIT II	ROBOT DRIVE SYSTEMS AND END EFFECTORS				9
Pneumatic Dri	ves-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. Servo	Mot	tors,		
Stepper Motors	s, A.C. Servo Motors-Salient Features, Applications and Comparison of	all th	nese		
Drives, End E	ffectors-Grippers-Mechanical Grippers, Pneumatic and Hydraulic- C	Gripp	ers,	С	:02
Magnetic Grip	pers, Vacuum Grippers; Two Fingered and Three Fingered Grippers;	Inte	rnal		
Grippers and E	xternal Grippers; Selection and Design Considerations.				
UNIT III	SENSORS AND MACHINE VISION				9
Requirements	of a sensor, Principles and Applications of the following types of s	sens	ors-		<u>. </u>
Position sense	ors - Piezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pr	neum	natic		
Position Senso	rs, Range Sensors Triangulations Principles, Structured, Lighting Ap	opro	ach,		
Time of Flight	, Range Finders, Laser Range Meters, Touch Sensors ,binary Sensors.	, An	alog		
Sensors, Wrist	Sensors, Compliance Sensors, Slip Sensors, Camera, Frame Grabber,	Sen	sing	С	03
and Digitizing	Image Data- Signal Conversion, Image Storage, Lighting Techniques	s, Im	age		
Processing a	nd Analysis-Data Reduction, Segmentation, Feature Extraction,	Ob	oject		
Recognition, C	Other Algorithms, Applications- Inspection, Identification, Visual Serv	ring	and		
Navigation.		-			
UNIT IV	ROBOT KINEMATICS AND ROBOT PROGRAMMING			1	9
Forward Kiner	natics, Inverse Kinematics and Difference; Forward Kinematics and	Reve	erse		1
Kinematics of	manipulators with Two, Three Degrees of Freedom (in 2 Dimensio	n), F	our		
Degrees of fre	edom (in 3 Dimension) Jacobians, Velocity and Forces-Manipulator Dy	/nam	nics,		
Trajectory Gen	erator, Manipulator Mechanism Design-Derivations and problems. Lead	thrc	bugh	C	;04
Programming,	Robot programming Languages-VAL Programming-Motion Commands	, Sei	nsor		
Commands, Er	nd Effector commands and simple Programs.				
	IMPLEMENTATION AND ROBOT ECONOMICS				9
RGV (Rail Gu	ided Vehicle), AGV (Automatic Guided Vehicle); Implementation of R	obot	s in		L
Industries-Vari	ous Steps; Safety Considerations for Robot Operations, Hazards o	of ro	bot,	C	:05
Economic Anal	ysis of Robots- Payback, EUAC, ROI Method.				-
	ΤΟΤΑΙ	: 4	5 PE	i Rio	DS

1. Klafter R.D., Chmielewski T.A and Negin M., "Robotic Engineering - An Integrated Approach", Prentice Hall, 2003.

2. Groover M.P., "Industrial Robotics -Technology Programming and Applications", McGraw Hill, 2001.

REFERENCE BOOKS

1. Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008.

2. Deb S.R., "Robotics Technology and Flexible Automation" Tata McGraw Hill Book Co., 1994.

3. Koren Y., "Robotics for Engineers", Mc Graw Hill Book Co., 1992.

4. Fu.K.S., Gonzalz R.C. and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill Book Co., 1987.

5. Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995.

6. Rajput R.K., "Robotics and Industrial Automation", S.Chand and Company, 2008.

7. Surender Kumar, "Industrial Robots and Computer Integrated Manufacturing", Oxford and IBH Publishing Co. Pvt. Ltd., 1991.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	To learn concepts of Robotic system, its components and instrumentation and control related to
001	robotics.
000	

CO2 To improve skills on hardware drives and interfacing aspects.

CO3 To enhance basics of different sensors and machine vision interaction.

CO4 To develop student's skills in performing kinematics analysis of robot systems.

CO5 To provide the student with some knowledge and skills associated with robot economics control.

MAPPING OF COs WITH POs AND PSOs

COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)					
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3				
CO1	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1				
CO2	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1				
CO3	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1				
CO4	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1				
CO5	3	2	1	2	2	0	0	0	0	0	0	2	3	2	1				

OME104	INDUSTRIAL SAFETY ENGINEERING	L	Т	Ρ	С						
		3	0	0	3						
OBJECTIVES:											
🔹 🛛 • To imp	part knowledge on safety engineering fundamentals and safety managen	nent	prac	tice	s.						
UNIT I	INTRODUCTION				9						
Evolution of n	nodern safety concepts - Fire prevention - Mechanical hazards -	Boi	lers,	C	01						
Pressure vesse	els, Electrical Exposure.				01						
UNIT II	CHEMICAL HAZARDS				9						
Chemical exposure - Toxic materials - Ionizing Radiation and Non-ionizing Radiation -											
Industrial Hygiene – Industrial Toxicology.											
UNIT III	ENVIRONMENTAL CONTROL				9						
Industrial Hea	lth Hazards – Environmental Control – Industrial Noise - Noise me	eası	iring	C	<u>03</u>						
instruments, C	ontrol of Noise, Vibration, - Personal Protection.				05						
UNIT IV	HAZARD ANALYSIS				9						
System Safety	Analysis – Techniques – Fault Tree Analysis (FTA), Failure Modes and	ל Eff	ects		~						
Analysis (FME	A), HAZOP analysis and Risk Assessment				04						
UNIT V	SAFETY REGULATIONS				9						
Explosions – Disaster management – catastrophe control, hazard control ,Safety education											
and training - Factories Act, Safety regulations Product safety – case studies.											
	TOTAL	.:4	5 PE	RIO	DS						

1. John V.Grimaldi, "Safety Management", AITB S Publishers, 2003.

REFERENCE BOOKS

 Safety Manual, "EDEL Engineering Consultancy", 2000.
 David L.Goetsch, "Occupational Safety and Health for Technologists", 5th Edition, Engineers and Managers, Pearson Education Ltd., 2005.

COUR	SE OU	тсом	ES												
Upon	compl	etion o	f the	cours	se, st	udent	s will	be a	ble to)					
CO1	under	stand t	ne bas	sic sa	fety c	oncep	ots in l	ndus	trial b	oilers,	pressu	ire ves	sels		
	understand the hazardous effects caused and prevention methods of chemicals used in														
CO2	industry														
CO3	understand the environmental measures and controls towards safety														
CO4	understand the analysis of safety preventions and hazards in industry														
CO5	under	stand t	ne saf	ety re	gulati	ons a	nd sa	fety n	nanag	gement					
				Μ	APPI	NG O	F CO	s WI	TH PC)s AN[D PSO	S			
COs				PRC	OGRA	MOU	лтсо	MES	(POs))			PROGI OUTC	RAM SPI OMES (I	ECIFIC PSOs)
	P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03														
CO1	3	3	3	3	3	3	3	2	2	3	3	3	3	3	3

CO2	3	3	3	3	3	3	3	2	2	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	2	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	2	2	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	2	2	3	3	3	3	3	3

OCS101	INTRODUCTION TO C PROGRAMMING	L T P										
		3	0	0	3							
OBJECTIVES												
 To und 	erstand the basic concepts in C Programming Language.											
 To und 	erstand Input and Output Statements.											
 To enhage 	ance analyzing and problem solving skills and use the same for writing p	rogr	ams	in C	-							
 To famile 	iliarize the basic syntax in arrays and pointers											
↔ Ioprov	vide exposure to problem-solving through programming											
UNITI	INTRODUCTORY CONCEPTS & C FUNDAMENTALS				9							
Introduction to Programming Characteristics	Computers - Computer Characteristics - Modes of Operation - 1 Languages - Introduction to C - Some Simple C Programs - Desirable - The C Character Set - Identifiers and Keywords - Data Types - Con Arrays Declarations Expressions Statements Symbolic Constants	ype Prog nsta	s of gram nts -	C	01							
	OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CON	FRO	1									
	STATEMENTS				9							
Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignment Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, printf, gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - do while Statement - for Statement - Nested Control Structures - The switch Statement - The break Statement - The continue Statement - The Comma Operator - The goto Statement												
UNIT III FUNCTIONS & PROGRAM STRUCTURE												
Defining a Fur Function – Re Static Variable	nction - Accessing a Function - Function Prototypes - Passing Argume cursion - Storage Classes - Automatic Variables - External (Global) Va s - Multifile Programs - More About Library Functions	ents ariab	to a les -	С	23							
UNIT IV	ARRAYS & POINTERS				9							
Defining an A Arrays - Array Functions - Po on Pointers - F Other Function	rray - Processing an Array - Passing Arrays to Functions - Multidim vs and Strings - Fundamentals - Pointer Declarations - Passing Po pinters and One-Dimensional Arrays - Dynamic Memory Allocation - Op Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Fun	ensi inter berat	ional s to tions ns to	C	D 4							
UNIT V	STRUCTURES, UNIONS & DATA FILES				9							
Defining a Stru and Pointers - and Closing a Files	icture - Processing a Structure - User-Defined Data Types (typedef) - Si Passing Structures to Functions - Self-Referential Structures – Unions - Data File - Creating a Data File - Processing a Data File - Unformati	truct Ope ted I	ures ning Data	С	25							
	TOTAL	: 4	5 PE	RIO	DS							
TEXT BOOKS												
1. Byron (Gottfried - Schaum's Outline of Programming with C, 2 nd Edition, McGraw	v-Hill	, 199	6.								
REFERENCE	BOOKS											
1. The C F 2. Let Us	Programming Language by Brian Kernighan and Dennis Ritchie 2 nd Edition C Yashavant kanetkar, BPB	on.										
COURSE OUT	COMES											

Upon	completion of the course, students will be able to
CO1	Identify situations where computational methods and computers would be useful.
CO2	Demonstrate the use of operators, input and output statements and control statements
CO3	Identify solution to a problem and apply control structures and user defined functions for solving the problem
CO4	Demonstrate the use of numeric arrays and pointers
CO5	Demonstrate the ability to design creative solutions to real life problems faced by the industry.

OME106	TESTING OF MATERIALS	L	Т	Ρ	С					
		3	0	0	3					
OBJECTIVES										
To study th	e various material testing methods and standards.									
To study th	e various mechanical testing and material characterization									
✤ To study t	he various destructive and non-destructive testing methods of mat	teria	ls ar	nd i	ts					
industrial a	oplications.									
UNITI	INTRODUCTION TO MATERIALS TESTING				9					
Overview of n	naterials: Classification of material testing, Purpose of testing, Sele	ection	n of							
material, Deve	opment of testing, Testing organizations and its committee, Testing sta	anda	rds,	C	01					
Result Analysis	s, Advantages of testing.									
UNIT II	MECHANICAL TESTING				9					
Introduction to	mechanical testing: Hardness test (Vickers, Brinell, Rockwell), Tens	sile	test,							
Impact test (Iz	od, Charpy) - Principles, Techniques, Methods, Advantages and Lim	nitati	ons,		02					
Applications. B	end test, Shear test, Creep and Fatigue test - Principles, Techniques, N	/leth	ods,		02					
Advantages an	d Limitations, Applications.									
UNIT III	NON DESTRUCTIVE TESTING				9					
Visual inspection	on, Liquid penetrant test, Magnetic particle test, Thermography test – Pr	incip	oles,							
Techniques, A	dvantages and Limitations, Applications. Radiographic test, Eddy curre	ent	test,	C	03					
Ultrasonic tes	t, Acoustic emission- Principles, Techniques, Methods, Advantag	es	and		00					
Limitations, Ap	plications.									
UNIT IV	MATERIAL CHARACTERIZATION TESTING				9					
Macroscopic a	nd Microscopic observations, Optical and Electron microscopy (SEM and	J TE	M) -							
Principles, Ty	pes, Advantages and Limitations, Applications. Diffraction Tecl	hniq	ues,	C	04					
Spectroscopic	Techniques, Electrical and Magnetic Techniques- Principles, Types, Adv	anta	iges		••					
and Limitations	, Applications.									
UNIT V	OTHER TESTING				9					
Thermal Testir	ng: Differential Scanning Calorimetry, Differential Thermal Analysis.	Ther	mo-							
mechanical and Dynamic mechanical analysis: Principles, Advantages, Applications. Chemical										
Testing: X-Ray	y Fluorescence, Elemental Analysis by Inductively Coupled Plasma	a-Op	tical							
Emission Spec	troscopy and Plasma-Mass Spectrometry.									
	TOTAL	. : 4	5 PE	rio	DS					

- 1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa Publishing House, 2009.
- 2. Cullity, B. D., "Elements of X-ray diffraction", 3rd Edition, Addison-Wesley Company Inc., New York, 2000.
- 3. P. Field Foster, "The Mechanical Testing of Metals and Alloys" 7th Edition, Cousens Press, 2007.

4. Suryanarayana A. V. K., "Testing of metallic materials", 2nd Edition, BS publications, 2018 **REFERENCE BOOKS**

1. Metals Handbook: Mechanical testing, (Volume 8) ASM Handbook Committee, 9th Edition, American Society for Metals, 1978.

2. ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA.

3. Brandon D.G., "Modern Techniques in Metallography", Von Nostrand Inc. NJ, USA, 1986. Publishing, 1998.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Identify various materials, different types of material testing, material testing standards and
COT	organizations, characterization and techniques
CO2	Identify various mechanical testing and its procedure with application for industrial use.
CO3	understand the various non-destructive testing techniques with application for industrial use.
CO4	analyze the surface and elemental behavior of various materials using different material
004	characterization techniques.
C 05	understand the thermal and chemical behavior of various materials by special testing
605	techniques.

	MAPPING OF COS WITH POS AND PSOS														
COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	2	2	1	2	1	1	1	1	3	2	1	1
CO2	3	2	2	1	2	1	2	1	1	1	2	3	2	2	2
CO3	3	2	1	2	2	1	2	1	1	1	2	3	2	1	1
CO4	3	1	2	2	2	1	2	1	1	1	1	3	2	2	2
CO5	3	2	2	2	2	1	2	1	1	1	1	3	2	1	1

OPEN ELECTIVES OFFERED TO OTHER DEPARTMENTS

OCE101	AIR POLLUTION AND CONTROL	L T P												
	(COMMON TO BIOTECH, EEE, EIE, MECH)	3	0	0	3									
OBJECTIVES	· · · · · · · · · · · · · · · · · · ·													
🛠 To imp	art knowledge on the principle and design of particulate/ gaseous air p	ollu	tant	and	its									
emergir	ng trends.													
 To acqui 	uaint the students with the basics of selection of control equipment.													
 To lear 	n about indoor air quality control.													
UNIT I	AIR QUALITY MONITORING				9									
Structure and	composition of Atmosphere – Definition, Scope and Scales of Air Po	llutic	on –											
Sources and	classification of air pollutants and their effect on human health, veg	geta	tion,	С	:01									
animals, prope	rty, aesthetic value and visibility- Ambient Air Quality and Emission star	ndar	ds –											
Composition of	Particulate and Gaseous Pollutants.													
UNIT II	EFFECT OF ATMOSPHERIC DISPERSION				9									
Effects of meteorology on Air Pollution - Fundamentals, Atmospheric stability, Inversion, Wind														
profiles and sta	ack plume patterns- Atmospheric Diffusion Theories – Dispersion models	s, Plu	ume	С	02									
rise														
UNIT III	PARTICULATE CONTAMINANTS				9									
Gas Particle In	teraction – Working principle, Gravity Separators, Centrifugal separators	Fab	ric											
filters, Particula	ate Scrubbers, Electrostatic Precipitators – Operational Considerations- F	acto	ors	C	03									
affecting Selec	tion of Control Equipment.													
UNIT IV	GASEOUS CONTAMINANTS				9									
Working princi	ple, Adsorption, condensation, Incineration, Bio scrubbers, Bio filters –	Proc	cess											
control and M	onitoring - Operational Considerations- Factors affecting Selection of	Co	ntrol	C	04									
Equipment –Co	D2 capturing.													
UNIT V	INDOOR AIR QUALITY MONITORING				9									
Sources, types and control of indoor air pollutants, sick building syndrome types –Sources and														
Effects of Noise Pollution– Standards–Control and Preventive measures.														
	TOTAL	: 45	5 PE	RIO	DS									
ι														
TEXT BOOKS														

- Lawrence K. Wang, Norman C. Pareira, Yung Tse Hung, Air Pollution Control Engineering, Tokyo, 2004.
- 2. Noel de Nevers, Air Pollution Control Engineering, Mc Graw Hill, New York, 1995.
- 3. Anjaneyulu. Y, "Air Pollution and Control Technologies", Allied Publishers (P) Ltd., India 2002

REFERENCE BOOKS

1. David H.F. Liu, Bela G. Liptak "Air Pollution", Lweis Publishers, 2000.

2. Arthur C.Stern, "Air Pollution (Vol.I – Vol.VIII)", Academic Press, 2006.

3. Wayne T.Davis, "Air Pollution Engineering Manual", John Wiley & Sons, Inc., 2000

COURSE OUTCOMES															
Upon	comple	etion o	of the	cours	se, st	udent	ts wil	l be a	ble to	b					
CO1	Unders	stand t	the ch	emist	ry of	atmo	spher	e, cha	aracte	erize th	ie air p	ollutar	nts , kno	w the ef	fects of
001	air poll	ution,	identi	fy the	criter	ia air	pollut	ants a	and kr	now ab	out NA	AQS			
<u> </u>	Apply	the kn	owled	lge of	math	emat	ics ar	nd sci	ence	fundar	nentals	s to un	derstand	the cor	cept of
002	meteo	rology,	air po	ollutio	n disp	oersio	n and	Gaus	ssian	plume	disper	sion m	odel		
CO3	Select suitable method and design the particulate pollutant control equipment														
CO4	Select appropriate method for control of gaseous pollutant by due consideration of sources of														
004	emission														
005	Understand the source of indoor air pollution, effects and control methods as well as to identify														
005	the source of noise, and select suitable method for control of noise pollution														
	MAPPING OF COS WITH POS AND PSOS														
				PRO	GRA								PROG	RAM SP	ECIFIC
COs				I KO					1 03)				OUTC	OMES (I	PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	0	0	0	0	0	0	0	0	0	0	1	2	3
CO2	2	1	0	0	0	0	0	0	0	0	0	0	1	2	3
CO3	3	2	0	0	0	1	0	0	0	0	0	0	2	3	3
CO4	3	2	0	0	0	1	0	0	0	0	0	0	2	3	3
CO5	3	2	0	0	0	1	0	0	0	0	0	0	2	3	3

OCE102	INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEM	YSTEM L T P											
	(COMMON TO AIDS, AIML, CSE, ECE, IT)	3	0	0	3								
OBJECTIVES													
 To intro 	duce the fundamentals and components of Geographic Information Syst	em											
 To prov 	vide details of spatial data structures and input, management and output												
 process 	Ses.												
UNITI	FUNDAMENTALS OF GIS				9								
Introduction to	GIS - Basic spatial concepts - Coordinate Systems - GIS and Info	orma	ation										
Systems – De	finitions – History of GIS - Components of a GIS – Hardware, Softwar	e, D)ata,	C C	<u>`01</u>								
People, Metho	ds – Proprietary and open source Software - Types of data – Spatial,	Attri	bute										
data- types of a	attributes – scales/ levels of measurements.												
UNIT II	SPATIAL DATA MODELS				9								
Database Structures - Relational, Object Oriented - ER diagram - spatial data models -													
Raster Data Structures – Raster Data Compression - Vector Data Structures - Raster vs Vector													
Models- TIN and GRID data models - OGC standards - Data Quality.													
UNIT III	DATA INPUT AND TOPOLOGY				9								
Scanner - Ras	ster Data Input – Raster Data File Formats – Vector Data Input –Di	gitis	er –										
Topology - A	djacency, connectivity and containment - Topological Consistency	rule	;s −	C	:03								
Attribute Data	inking – ODBC – GPS - Concept GPS based mapping.												
UNIT IV	DATA ANALYSIS				9								
Vector Data Ar	nalysis tools - Data Analysis tools - Network Analysis - Digital Education	mod	els -										
3D data collect	ion and utilisation				,04								
UNIT V	APPLICATIONS				9								
GIS Applicant	- Natural Resource Management - Engineering - Navigation - Vehicle	trac	king										
and fleet mana	gement - Marketing and Business applications - Case studies.				;05								
TOTAL : 45 PERIODS													
TEXT BOOKS													
1. Kang	- Tsung Chang, Introduction to Geographic Information Systems, McGra	aw H	lill										
Publishing 2nd Edition 2011													

2. Ian Heywood, Sarah Cornelius, Steve Carver, Srinivasa Raju, "An Introduction Geographical Information Systems, Pearson Education, 2nd Edition, 2007.

REFERENCE BOOKS

 Lo.C.P., Albert K.W. Yeung, Concepts and Techniques of Geographic Information Systems, Prentice-Hall India Publishers, 2006

COURSE OUTCOMES

Upon completion of the course, students will be able toCO1Have basic idea about the fundamentals of GIS.CO2Understand the types of data models.CO3Get knowledge about data input and topology.CO4Gain knowledge on data quality and standards.CO5Understand data management functions and data output

MAPPING OF COs WITH POS AND PSOs

COs				PRC	GRA	MOU	ITCOI	MES ((POs))			PROGRAM SPECIF OUTCOMES (PSO					
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3			
CO1	2	-	1	-	2	1	-	-	-	-	-	-	1	2	2			
CO2	2	1	2	2	3	1	-	-	-	-	-	-	2	3	2			
CO3	2	1	2	2	3	1	-	-	-	-	-	-	2	1	2			
CO4	2	1	2	-	3	1	-	-	-	-	-	-	2	2	1			
CO5	2	-	2	-	3	1	-	-	-	-	-	-	3	2	2			

OCE103	ENVIRONMENTAL IMPACT ASSESSMENT											
	(COMMON CHEMICAL, MECHANICAL)	3	0	0	3							
OBJECTIVES												
To impart knowledge on Environmental management and Environmental Impact Assessmen												
UNIT I	INTRODUCTION				9							
Impact of development projects-EIA Notifications-Urbanization-Meaning- Activities involved-												
Effects on environment-Environmental Impact Assessment(EIA)-Environmental Impact												
Statement(EIS).											
UNIT II	METHODOLOGIES				9							
Methods of El	A-Checklists-Matrices-Networks-Cost-benefit analysis-Analysis of alte	ernat	tives	Γ								
– Uncertainty i	n EIA.			C	02							
UNIT III	PREDICTION AND ASSESSMENT			<u> </u>	9							
Assessment of	f Impact on land, water, air, social & cultural activities and on flora&	Fa	una-									
Mathematical r	nodels-Public participation–SIA Judgment authorities-Rapid EIA.			C	03							
UNIT IV ENVIRONMENTAL MANAGEMENT PLAN												
Plan for mitigat	ion of adverse impact on environment–Options for mitigation of impact o	n wa	ater,		004							
air, land and or	n flora& fauna- Addressing the issues related to the Project Affected Peo	ple			04							
UNIT V	CASE STUDIES				9							
EIA for infras	tructure projects-Dams-Highways-Multi-storey Buildings-Water Sup	ply	and									
Drainage Proje	Drainage Projects-Waste water treatment plants, STP.											
TOTAL : 45 PERI												
TEXT BOOKS												
1. Canter, R.L., "Environmental Impact Assessment", McGraw-Hill Inc., New Delhi, 1996.												
2. Richard	K. Morgan., "Environmental Impact Assessment" Kluwer Academic Pub	licat	ions,	1								
London	, 2002											

REFERENCE BOOKS

- 1. John G. Rauand David C Hooten (Ed)., "Environmental Impact Analysis Handbook", McGraw-Hill BookCompany, 1990.
- 2. "Environmental Assessment Sourcebook", Vol.I, II &III. The World Bank, Washington, D.C., 1991.
- 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol.I & II", Blackwell Science, 1999.

COURSE OUTCOMES									
Upon completion of the course, students will be able to									
CO1	carry out scoping and screening of developmental projects for environmental and social assessments								
CO2	explain different methodologies for environmental impact prediction and assessment								
CO3	plan environmental impact assessments and environmental management plans								
CO4	evaluate environmental impact assessment reports								
CO5	understand the Membrane Applications.								
MAPPING OF COS WITH POS AND PSOS									

COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3		
C01	2	1	3	2	1	2	2	4	2	1	1	1	2	1	-		
CO2	3	2	1	2	2	1	2	1	3	4	1	2	1	1	-		
CO3	1	2	4	3	1	2	4	3	1	2	4	5	1	2	-		
CO4	1	2	2	4	2	1	1	1	2	1	3	2	1	2	-		
CO5	2	1	3	1	2	4	3	2	1	2	3	1	1	2	-		

OCE104	GREEN BUILDING DESIGN	L	Т	Ρ	С						
OBJECTIVES											
The course aims to develop skills of the students in the area of Civil Engineering with											
empt	emphasis in environmental implications of buildings and comforts in building										
🛠 This	This will enable the students to perform calculations pertaining to processes and operate										
UNIT I	ENVIRONMENTAL IMPLICATIONS OF BUILDINGS				9						
Energy use, o	carbon emissions, water use, waste disposal; Building materials:	sour	ces,								
methods of pro	duction and environmental Implications. Embodied Energy in Building N	later	ials:	С	01						
Transportation	Energy for Building Materials; Maintenance Energy for Buildings.										
UNIT II	IMPLICATIONS OF BUILDING TECHNOLOGIES EMBODIED EN	IERO	GY (OF	9						
	BUILDINGS										
Framed Const	ruction, Masonry Construction. Resources for Building Materials, Al	terna	ative	C	CO2						
concepts. Recy	cling of Industrial and Buildings Wastes. Biomass Resources for building	gs.		Ŭ	U2						
UNIT III	COMFORTS IN BUILDING				9						
Thermal Comf	ort in Buildings- Issues; Heat Transfer Characteristic of Building Mater	ials	and								
Building Tech	niques. Incidence of Solar Heat on Buildings-Implications of Geog	grapl	nical	С	03						
Locations											
UNIT IV	UTILITY OF SOLAR ENERGY IN BUILDINGS				9						
Utility of Solar	energy in buildings concepts of Solar Passive Cooling and Heating of B	uildi	ngs.	C	04						
Low Energy Cooling. Case studies of Solar Passive Cooled and Heated Buildings.											
UNIT V GREEN COMPOSITES FOR BUILDINGS											
Concepts of Green Composites. Water Utilization in Buildings, Low Energy Approaches to											
Water Management. Management of Solid Wastes. Management of Sullage Water and											
Sewage. Urban Environment and Green Buildings. Green Cover and Built Environment.											
TOTAL : 45 PERIO											

- 1. K.S.Jagadish, B. U. Venkataramareddy and K. S. Nanjundarao. Alternative Building Materials and Technologies. New Age International, 2007.
- 2. Low Energy Cooling for Sustainable Buildings. John Wiley and Sons Ltd, 2009.
- 3. Sustainable Building Design Manual. Vol 1 and 2, Teri, New Delhi, 2004.

REFERENCE BOOKS

- 1. Osman Attmann Green Architecture Advanced Technologies and Materials. McGraw Hill, 2010.
- 2. Jerry Yudelson Green building Through Integrated Design. McGraw Hill, 2009.
- 3. Fundamentals of Integrated Design for Sustainable Building By Marian Keeler, Bill Burke

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	understand core building science fundamentals
CO2	perform some building sustainability concepts
CO3	understand energy efficiency in relation to cost performance, ROI, etc
CO4	understand and perform some building performance testing and be exposed to different

	agenci	agencies involved in the testing.																	
CO5	5 understand and perform some weatherization fundamentals.																		
MAPPING OF COs WITH POS AND PSOS																			
		PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC				
COs															OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3				
CO1	3	3	-	3	3	3	3	-	-	-	3	2	1	-	3				
CO2	3	3	-	3	3	3	3	-	-	-	3	2	1	-	3				
CO3	3	3	-	3	3	3	3	-	-	-	3	2	1	-	3				
CO4	3	3	-	3	3	3	3	-	-	-	3	2	1	-	3				
CO5	3	3	-	3	3	3	3	-	-	-	3	2	1	-	3				